Long-Term Evolution (LTE)

Data Mining ◽  
2013 ◽  
pp. 336-365
Author(s):  
Bing He ◽  
Bin Xie ◽  
Sanjuli Agrawal ◽  
David Zhao ◽  
Ranga Reddy

With the ever growing demand on high throughput for mobile users, 3G cellular networks are limited in their network capacity for offering high data services to a large number of users. Consequently, many Internet services such as on-demand video and mobile TV are hard to be satisfactorily supported by the current 3G cellular networks. 3GPP Long Term Evolution (LTE) is a recently proposed 4G standard, representing a significant advance of 3G cellular technology. Attractively, LTE would offer an uplink data speed up to 50 Mbps and a downlink speed up to 100 Mbps for various services such as traditional voice, high-speed data, multimedia unicast, and multimedia broadcasting. In such a short time, it has been broadly accepted by major wireless vendors such as Verizon-Vodafone, AT&T, NTT-Docomo, KDDI, T-Mobile, and China Mobile. In order for high data link speed, LTE adapts new technologies that are new to 3G network such as Orthogonal Frequency Division Multiplexing (OFDM) and Multiple-Input Multiple-Output (MIMO). MIMO allows the use of more than one antenna at the transmitter and receiver for higher data transmission. The LTE bandwidth can be scalable from 1.25 to 20 MHz, satisfying the need of different network operators that may have different bandwidth allocations for services, based on its managed spectrum. In this chapter, we discuss the major advance of the LTE and its recent research efforts in improving its performance. Our illustration of LTE is comprehensive, spanning from the LTE physical layer to link layer. In addition, the LTE security is also discussed.

Author(s):  
Bing He ◽  
Bin Xie ◽  
Sanjuli Agrawal ◽  
David Zhao ◽  
Ranga Reddy

With the ever growing demand on high throughput for mobile users, 3G cellular networks are limited in their network capacity for offering high data services to a large number of users. Consequently, many Internet services such as on-demand video and mobile TV are hard to be satisfactorily supported by the current 3G cellular networks. 3GPP Long Term Evolution (LTE) is a recently proposed 4G standard, representing a significant advance of 3G cellular technology. Attractively, LTE would offer an uplink data speed up to 50 Mbps and a downlink speed up to 100 Mbps for various services such as traditional voice, high-speed data, multimedia unicast, and multimedia broadcasting. In such a short time, it has been broadly accepted by major wireless vendors such as Verizon-Vodafone, AT&T, NTT-Docomo, KDDI, T-Mobile, and China Mobile. In order for high data link speed, LTE adapts new technologies that are new to 3G network such as Orthogonal Frequency Division Multiplexing (OFDM) and Multiple-Input Multiple-Output (MIMO). MIMO allows the use of more than one antenna at the transmitter and receiver for higher data transmission. The LTE bandwidth can be scalable from 1.25 to 20 MHz, satisfying the need of different network operators that may have different bandwidth allocations for services, based on its managed spectrum. In this chapter, we discuss the major advance of the LTE and its recent research efforts in improving its performance. Our illustration of LTE is comprehensive, spanning from the LTE physical layer to link layer. In addition, the LTE security is also discussed.


Author(s):  
Eduardo Rodríguez Araque ◽  
Roberto G. Rojas-Teran

Este trabajo trata de un arreglo de antenas MIMO (multiple-input-multiple-output) que opera en la banda de 2.6 GHz, una banda de Long Term Evolution (LTE), para sistemas de comunicaciones móviles inalámbricas 4G. El arreglo de antenas consiste de 4 antenas compactas tipo patch sobre un substrato dieléctrico (PCB) de 125 mm x 62.5 mm x 1.27 mm. Modificaciones del plano de tierra (GND) junto con la ubicación sistemática y orientación de cada antena en la cara posterior al plano de tierra del PCB (Printed Circuit Board) juegan un rol muy importante en la reducción sustancial del acoplamiento mutuo, esto generalmente afecta el desempeño de los arreglos MIMO.Palabras clave: Arreglo de antenas, modos característicos, correlación espacial, multiple-input-multiple-output (MIMO), acoplamiento mutuo.


Author(s):  
Dr. Abul Bashar

Artificial intelligence based long term evolution multi in multi output antenna supporting the fifth generation mobile networks is put forth in the paper. The mechanism laid out in paper is devised using the monopole-antenna integrated with the switchable pattern. The long term evolution based multiple input and multiple output antenna is equipped with four antennas and capable of providing a four concurrent data streams quadrupling the theoretical maximum speed of data transfer allowing the base station to convey four diverse signals through four diverse transmit antennas for a single user equipment. The utilization of the long term evolution multiple input multiple output is capable of utilizing the multi-trial broadcasting to offer betterments in the signal performance as well as throughput and spectral efficiency when used along the fifth generation mobile networks. So the paper proposes the artificial intelligence based long term evolution multiple input multiple output four transmit antenna with four diverse signal transmission capacity that is operating in the frequency of 3.501 Gigahertz frequency. The laid out design is evaluated using the Multi-input Multi output signal analyzer to acquire the capacity of the passive conveyance of the various antennas with the diverse combination of patterns. The outcomes observed enables the artificial intelligence antenna to identify the choicest antenna to be integrated in the diverse environments for improving the throughput, signal performance and the data conveyance speed.


Sign in / Sign up

Export Citation Format

Share Document