Green Computing

Green computing is a contemporary research topic to address climate and energy challenges. In this chapter, the authors envision the duality of green computing with technological trends in other fields of computing such as High Performance Computing (HPC) and cloud computing on one hand and economy and business on the other hand. For instance, in order to provide electricity for large-scale cloud infrastructures and to reach exascale computing, we need huge amounts of energy. Thus, green computing is a challenge for the future of cloud computing and HPC. Alternatively, clouds and HPC provide solutions for green computing and climate change. In this chapter, the authors discuss this proposition by looking at the technology in detail.

Author(s):  
Adrian Jackson ◽  
Michèle Weiland

This chapter describes experiences using Cloud infrastructures for scientific computing, both for serial and parallel computing. Amazon’s High Performance Computing (HPC) Cloud computing resources were compared to traditional HPC resources to quantify performance as well as assessing the complexity and cost of using the Cloud. Furthermore, a shared Cloud infrastructure is compared to standard desktop resources for scientific simulations. Whilst this is only a small scale evaluation these Cloud offerings, it does allow some conclusions to be drawn, particularly that the Cloud can currently not match the parallel performance of dedicated HPC machines for large scale parallel programs but can match the serial performance of standard computing resources for serial and small scale parallel programs. Also, the shared Cloud infrastructure cannot match dedicated computing resources for low level benchmarks, although for an actual scientific code, performance is comparable.


2021 ◽  
Author(s):  
Mohsen Hadianpour ◽  
Ehsan Rezayat ◽  
Mohammad-Reza Dehaqani

Abstract Due to the significantly drastic progress and improvement in neurophysiological recording technologies, neuroscientists have faced various complexities dealing with unstructured large-scale neural data. In the neuroscience community, these complexities could create serious bottlenecks in storing, sharing, and processing neural datasets. In this article, we developed a distributed high-performance computing (HPC) framework called `Big neuronal data framework' (BNDF), to overcome these complexities. BNDF is based on open-source big data frameworks, Hadoop and Spark providing a flexible and scalable structure. We examined BNDF on three different large-scale electrophysiological recording datasets from nonhuman primate’s brains. Our results exhibited faster runtimes with scalability due to the distributed nature of BNDF. We compared BNDF results to a widely used platform like MATLAB in an equitable computational resource. Compared with other similar methods, using BNDF provides more than five times faster performance in spike sorting as a usual neuroscience application.


2017 ◽  
Vol 33 (2) ◽  
pp. 119-130
Author(s):  
Vinh Van Le ◽  
Hoai Van Tran ◽  
Hieu Ngoc Duong ◽  
Giang Xuan Bui ◽  
Lang Van Tran

Metagenomics is a powerful approach to study environment samples which do not require the isolation and cultivation of individual organisms. One of the essential tasks in a metagenomic project is to identify the origin of reads, referred to as taxonomic assignment. Due to the fact that each metagenomic project has to analyze large-scale datasets, the metatenomic assignment is very much computation intensive. This study proposes a parallel algorithm for the taxonomic assignment problem, called SeMetaPL, which aims to deal with the computational challenge. The proposed algorithm is evaluated with both simulated and real datasets on a high performance computing system. Experimental results demonstrate that the algorithm is able to achieve good performance and utilize resources of the system efficiently. The software implementing the algorithm and all test datasets can be downloaded at http://it.hcmute.edu.vn/bioinfo/metapro/SeMetaPL.html.


Author(s):  
Atta ur Rehman Khan ◽  
Abdul Nasir Khan

Mobile devices are gaining high popularity due to support for a wide range of applications. However, the mobile devices are resource constrained and many applications require high resources. To cater to this issue, the researchers envision usage of mobile cloud computing technology which offers high performance computing, execution of resource intensive applications, and energy efficiency. This chapter highlights importance of mobile devices, high performance applications, and the computing challenges of mobile devices. It also provides a brief introduction to mobile cloud computing technology, its architecture, types of mobile applications, computation offloading process, effective offloading challenges, and high performance computing application on mobile devises that are enabled by mobile cloud computing technology.


2019 ◽  
Vol 3 (4) ◽  
pp. 902-904
Author(s):  
Alexander Peyser ◽  
Sandra Diaz Pier ◽  
Wouter Klijn ◽  
Abigail Morrison ◽  
Jochen Triesch

Large-scale in silico experimentation depends on the generation of connectomes beyond available anatomical structure. We suggest that linking research across the fields of experimental connectomics, theoretical neuroscience, and high-performance computing can enable a new generation of models bridging the gap between biophysical detail and global function. This Focus Feature on ”Linking Experimental and Computational Connectomics” aims to bring together some examples from these domains as a step toward the development of more comprehensive generative models of multiscale connectomes.


Sign in / Sign up

Export Citation Format

Share Document