Sensing Coverage and Connectivity in Cognitive Radio Sensor Networks

Author(s):  
Ecehan Berk Pehlivanoğlu ◽  
Mustafa Özger ◽  
Özgür Barış Akan

Sensing coverage of a field of interest and connectivity are two very important performance measures in Wireless Sensor Networks (WSNs). Existing design methodologies and protocols for enhanced field sensing coverage and connectivity in WSNs are not directly applicable to Cognitive Radio Sensor Networks (CRSNs) due to their cognitive nature. In this chapter, the authors first review sensing coverage and connectivity models for traditional WSNs. Then, they propose novel approaches for sensing coverage and connectivity establishment in CRSN, benefiting from useful existing models from WSN and Cognitive Radio Ad Hoc Networks (CRAHNs). Proposed approaches span a wide variety of CRSN requirements and also point out open research problems in the field to guarantee sufficient sensing coverage quality and connectivity in CRSN.

Author(s):  
Ecehan Berk Pehlivanoğlu ◽  
Mustafa Özger ◽  
Özgür Barış Akan

Sensing coverage of a field of interest and connectivity are two very important performance measures in Wireless Sensor Networks (WSNs). Existing design methodologies and protocols for enhanced field sensing coverage and connectivity in WSNs are not directly applicable to Cognitive Radio Sensor Networks (CRSNs) due to their cognitive nature. In this chapter, the authors first review sensing coverage and connectivity models for traditional WSNs. Then, they propose novel approaches for sensing coverage and connectivity establishment in CRSN, benefiting from useful existing models from WSN and Cognitive Radio Ad Hoc Networks (CRAHNs). Proposed approaches span a wide variety of CRSN requirements and also point out open research problems in the field to guarantee sufficient sensing coverage quality and connectivity in CRSN.


Author(s):  
Ejaz Ahmed ◽  
Salman Ali ◽  
Adnan Akhunzada ◽  
Ibrar Yaqoob

This chapter provides a review of design practices in network communication for Cognitive Radio Sensor Networks. The basics of networking and Medium Access Control functionalities with focus on data routing and spectrum usage are discussed. Technical differences manifest in various network layouts, hence the role of various specialized nodes, such as relay, aggregator, or gateway in Cognitive Radio Sensor Networks need analysis. Optimal routing techniques suitable for different topologies are also summarized. Data delivery protocols are categorized under priority-based, energy-efficient, ad hoc routing-based, attribute-based, and location-aware routing. Broadcast, unicast, and detection of silence periods are discussed for network operation with slotted or unslotted time. Efficient spectrum usage finds the most important application here involving use of dynamic, opportunistic, and fixed spectrum usage. Finally, a thorough discussion on the open issues and challenges for Cognitive Radio Sensor Network communication and internetworking in Cognitive Radio Sensor Network-based deployments and methods to address them are provided.


2012 ◽  
Vol 8 (10) ◽  
pp. 370251 ◽  
Author(s):  
Peng Hu ◽  
Mohamed Ibnkahla

Spectrum sharing fairness is an important topic in cognitive radio ad hoc networks (CRAHNs) and cognitive radio sensor networks (CRSNs). Consensus-based protocols can provide light-weight and efficient solutions for CRAHNs and CRSNs but the theoretical ground needs to be investigated for spectrum sharing fairness. In this paper, we investigate the convergence condition when applying a consensus-based protocol to spectrum sharing while ensuring spectrum sharing fairness. Based on the local observation and local control scheme using spectrum-related information, an individual cognitive node can effectively perform the spectrum sharing. Then we propose a consensus-based protocol for spectrum sharing. Supported with computer simulation results, we show the effectiveness of using the proposed consensus-based protocol to solve the spectrum sharing problems in CRAHNs and CRSNs.


2014 ◽  
Vol 36 (7) ◽  
pp. 1337-1348 ◽  
Author(s):  
Tao LUO ◽  
Ming ZHAO ◽  
Jing-Ye LI ◽  
Guang-Xin YUE ◽  
Xiao-Jun WANG

Sign in / Sign up

Export Citation Format

Share Document