Spectrum Sensing in Cognitive Radio Sensor Networks

Author(s):  
Farooq Alam ◽  
Zahooruddin ◽  
Ayaz Ahmad ◽  
Muhammad Iqbal

In this chapter, the authors provide a comprehensive review of spectrum sensing in cognitive radio sensor networks. Firstly, they focus on general techniques utilized for spectrum sensing in wireless sensor networks. To have good understanding of core issues of spectrum sensing, the authors then give a brief description of cognitive radio networks. Then they give a thorough description of the main techniques that can be helpful in doing spectrum sensing in cognitive radio sensor network. The authors conclude this chapter with open research issues and challenges that need to be addressed to provide efficient spectrum sensing in order to minimize the limitations in cognitive radio sensor networks.

Author(s):  
Zahooruddin ◽  
Ayaz Ahmad ◽  
Muhammad Iqbal ◽  
Farooq Alam ◽  
Sadiq Ahmad

Independent component analysis is extensively used for blind source separation of different signals in various engineering disciplines. It has its applications in several areas of communication, multiple input multiple output, orthogonal frequency division multiplexing, wireless sensor networks, and cognitive radio networks. In this chapter, the authors discuss the general theory of independent component analysis, wireless sensor networks, cognitive radio networks, and cognitive radio sensor networks. The main focus of the chapter is the application of independent component analysis in cognitive radio networks, wireless sensor networks, and cognitive radio sensor networks. The issues and challenges of these emerging technologies are discussed while applying independent component analysis. Cognitive radio sensor network is a promising technology to efficiently resolve the issues of spectrum usage in sensor networks. The authors are the first to discuss the applications of independent component analysis in cognitive radio sensor networks. At the end of this chapter, they discuss some future research problems regarding the applications of independent component analysis in cognitive radio sensor networks.


Author(s):  
Amna Jamal ◽  
Chen-Khong Tham ◽  
Wai-Choong Wong

Cognitive Radio (CR) technology has gained popularity in Wireless Sensor Networks (WSN) because of scarcity caused by the increase in number of wireless devices and service, and it provides spectrum-efficient communication for the resource constrained WSNs. However, appropriate protocols have to be devised to satisfy the requirements of both WSNs and CRs and to enjoy the benefits of cognition in sensor networks. In this chapter, the authors review the existing schemes for wired, wireless, and cognitive radio networks. In addition, they propose a novel energy-efficient and spectrum-aware Medium Access Control (MAC) protocol for the cognitive radio sensor network. The authors design a spectrum-aware asynchronous duty cycle approach that caters to the requirements of both the domains. The performance of the proposed MAC is evaluated via simulations. Performance evaluations are also compared with MCMAC, a multi-channel MAC for WSNs. The comparative results show that the proposed scheme outperforms the multi-channel scheme for WSN.


2018 ◽  
Vol 14 (5) ◽  
pp. 155014771877446
Author(s):  
Qi Yang ◽  
Xuan Zhang ◽  
Jingfeng Qian ◽  
Qiang Ye

In wireless sensor networks, time synchronization is an important issue for all nodes to have a unified time. The wireless sensor network nodes should cooperatively adjust their local time according to certain distributed synchronization algorithms to achieve global time synchronization. Conventionally, it is assumed that all nodes in the network are cooperative and well-functioned in the synchronization process. However, in cognitive radio wireless sensor networks, the global time synchronization process among secondary users is prone to fail because the communication process for exchanging synchronization reference may be frequently interrupted by the primary users. The anomaly nodes that failed to synchronize will significantly affect the global convergence performance of the synchronization algorithm. This article proposes an anomaly node detection method for distributed time synchronization algorithm in cognitive radio sensor networks. The proposed method adopts the statistical linear correlation analysis approach to detect anomaly nodes through the historical time synchronization information stored in local nodes. Simulation results show that the proposed method can effectively improve the robustness of the synchronization algorithm in distributed cognitive radio sensor networks.


Implementing cognitive radio sensor nodes in wireless sensor networks introduced a smart combination called cognitive radio sensor network (CRSN) which creates new challenges in the design of network topology. Conserving the nodes energy helps to extend the lifetime of the network. This stands as an important criterion while designing any algorithm. In order to achieve the same, two important criteria are to be considered – the communicating distance between the nodes or node to base station and proper spectrum sharing technique. In the proposed work, Energy Reckoning Distance-Based Clustering (ERDBC) algorithm, both the criterion is taken into consideration and designed in order to increase the lifetime of a cognitive radio sensor network. In the ERDBC algorithm, the whole network area is divided into three regions according to the distance and the cluster heads are elected based on energy, distance and common channel creates a greater impact on retaining the nodes energy. Also, implementing multi-hop routing using proper spectrum sharing technique helps to avoid data collision and retransmission thereby; the energy consumption of the nodes are reduced to a greater extent. The performance of the proposed ERDBC algorithm is measured on the basis of residual energy, throughput, channel usage, first node death, last node death, and network lifetime, and compared with the already existing LEACH, CogLEACH, LEAUCH and CEED algorithms. Thus the network lifetime of the proposed ERDBC algorithm is 78.18% more than LEACH, 73.6% more than CogLEACH, 29.88% more than CEED and 17.98% more than LEAUCH algorithms


Author(s):  
Zahooruddin ◽  
Ayaz Ahmad ◽  
Muhammad Iqbal ◽  
Farooq Alam ◽  
Sadiq Ahmad

Independent component analysis is extensively used for blind source separation of different signals in various engineering disciplines. It has its applications in several areas of communication, multiple input multiple output, orthogonal frequency division multiplexing, wireless sensor networks, and cognitive radio networks. In this chapter, the authors discuss the general theory of independent component analysis, wireless sensor networks, cognitive radio networks, and cognitive radio sensor networks. The main focus of the chapter is the application of independent component analysis in cognitive radio networks, wireless sensor networks, and cognitive radio sensor networks. The issues and challenges of these emerging technologies are discussed while applying independent component analysis. Cognitive radio sensor network is a promising technology to efficiently resolve the issues of spectrum usage in sensor networks. The authors are the first to discuss the applications of independent component analysis in cognitive radio sensor networks. At the end of this chapter, they discuss some future research problems regarding the applications of independent component analysis in cognitive radio sensor networks.


Author(s):  
Amna Jamal ◽  
Chen-Khong Tham ◽  
Wai-Choong Wong

Cognitive Radio (CR) technology has gained popularity in Wireless Sensor Networks (WSN) because of scarcity caused by the increase in number of wireless devices and service, and it provides spectrum-efficient communication for the resource constrained WSNs. However, appropriate protocols have to be devised to satisfy the requirements of both WSNs and CRs and to enjoy the benefits of cognition in sensor networks. In this chapter, the authors review the existing schemes for wired, wireless, and cognitive radio networks. In addition, they propose a novel energy-efficient and spectrum-aware Medium Access Control (MAC) protocol for the cognitive radio sensor network. The authors design a spectrum-aware asynchronous duty cycle approach that caters to the requirements of both the domains. The performance of the proposed MAC is evaluated via simulations. Performance evaluations are also compared with MCMAC, a multi-channel MAC for WSNs. The comparative results show that the proposed scheme outperforms the multi-channel scheme for WSN.


2018 ◽  
Vol 14 (4) ◽  
pp. 155014771877253 ◽  
Author(s):  
Anfeng Liu ◽  
Wei Chen ◽  
Xiao Liu

In order to solve the problem of spectrum scarcity in wireless sensor networks, cognitive radio technology can be introduced into wireless sensor networks, giving rising to cognitive radio sensor networks. Delay-sensitive data applications in cognitive radio sensor networks require efficient real-time communication. Opportunistic pipeline routing is a potential technology to reduce the delay, which can use nodes outside the main forwarding path forward data opportunistically when the transmission fails. However, the energy efficiency of cognitive radio sensor networks with opportunistic pipeline routing is low, and the data transmission delay can be further optimized. In view of this situation, we propose the delay optimal opportunistic pipeline routing scheme named Variable Duty Cycle for Opportunistic Pipeline Routing (VDCOPR). In the Variable Duty Cycle for Opportunistic Pipeline Routing scheme, the nodes employ high duty cycle in the area far from the sink, and low duty cycle in the area near to the sink, which can achieve the balance of energy consumption and reduce the data transmission delay while not affecting network lifetime. The theoretical analysis and experimental results show that, compared with previous opportunistic pipeline routing, energy consumption of network is relatively balanced and the data transmission delay can be reduced by 36.6% in the Variable Duty Cycle for Opportunistic Pipeline Routing scheme.


Sign in / Sign up

Export Citation Format

Share Document