Recent Advancements in Docking Methodologies

Oncology ◽  
2017 ◽  
pp. 848-875
Author(s):  
Vijay Kumar Srivastav ◽  
Vineet Singh ◽  
Meena Tiwari

Nowadays molecular docking has become an important methodology in CADD (Computer-Aided Drug Design)-assisted drug discovery process. It is an important computational tool widely used to predict binding mode, binding affinity and binding free energy of a protein-ligand complex. The important factors responsible for accurate results in docking studies are correct binding site prediction, use of suitable small-molecule databases, consistent docking pose, high dock score with good MD (Molecular Dynamics), clarity whether the compound is an inhibitor or agonist, etc. However, still there are several limitations which make it difficult to obtain accurate results from docking studies. In this chapter, the main focus is on recent advancements in various aspects of molecular docking such as ligand sampling, protein flexibility, scoring functions, fragment docking, post-processing, docking into homology models and protein-protein docking.

Author(s):  
Vijay Kumar Srivastav ◽  
Vineet Singh ◽  
Meena Tiwari

Nowadays molecular docking has become an important methodology in CADD (Computer-Aided Drug Design)-assisted drug discovery process. It is an important computational tool widely used to predict binding mode, binding affinity and binding free energy of a protein-ligand complex. The important factors responsible for accurate results in docking studies are correct binding site prediction, use of suitable small-molecule databases, consistent docking pose, high dock score with good MD (Molecular Dynamics), clarity whether the compound is an inhibitor or agonist, etc. However, still there are several limitations which make it difficult to obtain accurate results from docking studies. In this chapter, the main focus is on recent advancements in various aspects of molecular docking such as ligand sampling, protein flexibility, scoring functions, fragment docking, post-processing, docking into homology models and protein-protein docking.


Author(s):  
Sowmya Suri ◽  
Rumana Waseem ◽  
Seshagiri Bandi ◽  
Sania Shaik

A 3D model of Cyclin-dependent kinase 5 (CDK5) (Accession Number: Q543f6) is generated based on crystal structure of P. falciparum PFPK5-indirubin-5-sulphonate ligand complex (PDB ID: 1V0O) at 2.30 Å resolution was used as template. Protein-ligand interaction studies were performed with flavonoids to explore structural features and binding mechanism of flavonoids as CDK5 (Cyclin-dependent kinase 5) inhibitors. The modelled structure was selected on the basis of least modeler objective function. The model was validated by PROCHECK. The predicted 3D model is reliable with 93.0% of amino acid residues in core region of the Ramachandran plot. Molecular docking studies with flavonoids viz., Diosmetin, Eriodictyol, Fortuneletin, Apigenin, Ayanin, Baicalein, Chrysoeriol and Chrysosplenol-D with modelled protein indicate that Diosmetin is the best inhibitor containing docking score of -8.23 kcal/mol. Cys83, Lys89, Asp84. The compound Diosmetin shows interactions with Cys83, Lys89, and Asp84.


2020 ◽  
Vol 17 (2) ◽  
pp. 233-247
Author(s):  
Krishna A. Gajjar ◽  
Anuradha K. Gajjar

Background: Pharmacophore mapping and molecular docking can be synergistically integrated to improve the drug design and discovery process. A rational strategy, combiphore approach, derived from the combined study of Structure and Ligand based pharmacophore has been described to identify novel GPR40 modulators. Methods: DISCOtech module from Discovery studio was used for the generation of the Structure and Ligand based pharmacophore models which gave hydrophobic aromatic, ring aromatic and negative ionizable as essential pharmacophoric features. The generated models were validated by screening active and inactive datasets, GH scoring and ROC curve analysis. The best model was exposed as a 3D query to screen the hits from databases like GLASS (GPCR-Ligand Association), GPCR SARfari and Mini-Maybridge. Various filters were applied to retrieve the hit molecules having good drug-like properties. A known protein structure of hGPR40 (pdb: 4PHU) having TAK-875 as ligand complex was used to perform the molecular docking studies; using SYBYL-X 1.2 software. Results and Conclusion: Clustering both the models gave RMSD of 0.89. Therefore, the present approach explored the maximum features by combining both ligand and structure based pharmacophore models. A common structural motif as identified in combiphore for GPR40 modulation consists of the para-substituted phenyl propionic acid scaffold. Therefore, the combiphore approach, whereby maximum structural information (from both ligand and biological protein) is explored, gives maximum insights into the plausible protein-ligand interactions and provides potential lead candidates as exemplified in this study.


2018 ◽  
Vol 8 (5-s) ◽  
pp. 240-250
Author(s):  
Manish Bachhar ◽  
BK Singh

New derivatives are designed as target directed MAO-B Inhibitors for medical care of the patients for neurodegenerative disorder. Molecular design and estimated pharmacokinetic properties have been evaluated by using Inventus v 1.1 software. The binding mode of the proposed compounds with target protein i.e. 1S2Q was evaluated and the resulting data from docking studies explained that newly designed derivatives have high and better affinity towards target protein. Based on these properties, the binding affinities are used for speeding up drug discovery process by eliminating less potent compounds from synthesis. Keywords: MAO-B, Inventus, Target protein, Neurodegenerative, Docking.


2017 ◽  
pp. 820-849
Author(s):  
Marjana Novič ◽  
Tjaša Tibaut ◽  
Marko Anderluh ◽  
Jure Borišek ◽  
Tihomir Tomašič

This chapter, composed of two parts, firstly provides molecular docking overview and secondly two molecular docking case studies are described. In overview, basic information about molecular docking are presented such as description of search algorithms and scoring functions applied in various docking programs. Brief description of methods utilized in some of the most popular docking programs also applied in our experimental work is provided. AutoDock, CDOCKER, GOLD, FlexX and FRED were used for docking studies of the DC-SIGN protein, while GOLD was further used for docking studies of cathepsin K protein. Methods and results of our studies with their contribution to science and medicine are presented. Content of the chapter is therefore appropriate for public of Medicinal and Organic Chemistry as an overview of docking studies, and also for Computational Chemists at the beginning of their work as the introduction to application of molecular docking programs.


RSC Advances ◽  
2014 ◽  
Vol 4 (108) ◽  
pp. 63549-63558 ◽  
Author(s):  
Saptarshi Ghosh ◽  
Pronab Kundu ◽  
Bijan Kumar Paul ◽  
Nitin Chattopadhyay

Binding mode of biologically relevant anionic probe, ANS, with ctDNA is divulged from spectroscopic and molecular docking studies.


Author(s):  
Sanchaita Rajkhowa ◽  
Ramesh C. Deka

Molecular docking is a key tool in structural biology and computer-assisted drug design. Molecular docking is a method which predicts the preferred orientation of a ligand when bound in an active site to form a stable complex. It is the most common method used as a structure-based drug design. Here, the authors intend to discuss the various types of docking methods and their development and applications in modern drug discovery. The important basic theories such as sampling algorithm and scoring functions have been discussed briefly. The performances of the different available docking software have also been discussed. This chapter also includes some application examples of docking studies in modern drug discovery such as targeted drug delivery using carbon nanotubes, docking of nucleic acids to find the binding modes and a comparative study between high-throughput screening and structure-based virtual screening.


Author(s):  
Marjana Novič ◽  
Tjaša Tibaut ◽  
Marko Anderluh ◽  
Jure Borišek ◽  
Tihomir Tomašič

This chapter, composed of two parts, firstly provides molecular docking overview and secondly two molecular docking case studies are described. In overview, basic information about molecular docking are presented such as description of search algorithms and scoring functions applied in various docking programs. Brief description of methods utilized in some of the most popular docking programs also applied in our experimental work is provided. AutoDock, CDOCKER, GOLD, FlexX and FRED were used for docking studies of the DC-SIGN protein, while GOLD was further used for docking studies of cathepsin K protein. Methods and results of our studies with their contribution to science and medicine are presented. Content of the chapter is therefore appropriate for public of Medicinal and Organic Chemistry as an overview of docking studies, and also for Computational Chemists at the beginning of their work as the introduction to application of molecular docking programs.


Author(s):  
Maryam Hamzeh-Mivehroud ◽  
Babak Sokouti ◽  
Siavoush Dastmalchi

The current chapter introduces different aspects of molecular docking technique in order to give an overview to the readers about the topics which will be dealt with throughout this volume. Like many other fields of science, molecular docking studies has experienced a lagging period of slow and steady increase in terms of acquiring attention of scientific community as well as its frequency of application, followed by a pronounced era of exponential expansion in theory, methodology, areas of application and performance due to developments in related technologies such as computational resources and theoretical as well as experimental biophysical methods. In the following sections the evolution of molecular docking will be reviewed and its different components including methods, search algorithms, scoring functions, validation of the methods, and area of applications plus few case studies will be touched briefly.


Author(s):  
Saurabh C. Khadse ◽  
Nikhil D. Amnerkar ◽  
Manasi U. Dave ◽  
Deepak K. Lokwani ◽  
Ravindra R. Patil ◽  
...  

Abstract Background A small library of quinazolin-4-one clubbed thiazole acetates/acetamides lacking toxicity-producing functionalities was designed, synthesized, and evaluated for antidiabetic potential as glucokinase activators (GKA). Molecular docking studies were done in the allosteric site of the human glucokinase (PDB ID: 1V4S) enzyme to assess the binding mode and interactions of synthesized hits for best-fit conformations. All the compounds were evaluated by in vitro enzymatic assay for GK activation. Results Data showed that compounds 3 (EC50 = 632 nM) and 4 (EC50 = 516 nM) showed maximum GK activation compared to the standards RO-281675 and piragliatin. Based on the results of the in vitro enzyme assay, docking studies, and substitution pattern, selected compounds were tested for their glucose-lowering effect in vivo by oral glucose tolerance test (OGTT) in normal rats. Compounds 3 (133 mg/dL) and 4 (135 mg/dL) exhibited prominent activity by lowering the glucose level to almost normal, eliciting the results in parallel to enzyme assay and docking studies. Binding free energy, hydrogen bonding, and π–π interactions of most active quinazolin-4-one derivatives 3 and 4 with key amino acid residues of the 1V4S enzyme were studied precisely. Preliminary in-silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction was carried out using SwissADME and PreADMET online software which revealed that all the compounds have the potential to become orally active antidiabetic agents as they obeyed Lipinski's rule of five. Conclusion The results revealed that the designed lead could be significant for the strategic design of safe, effective, and orally bioavailable quinazolinone derivatives as glucokinase activators.


Sign in / Sign up

Export Citation Format

Share Document