On Mutual Relations amongst Evolutionary Algorithm Dynamics and Its Hidden Complex Network Structures

2016 ◽  
pp. 215-239 ◽  
Author(s):  
Ivan Zelinka

In this chapter, we do synthesis of three partially different areas of research: complex networks, evolutionary computation and deterministic chaos. Ideas, results and methodologies reported and mentioned here are based on our previous results and experiments. We report here our latest results as well as propositions on further research that is in process in our group (http://navy.cs.vsb.cz/). In order to understand what is the main idea, lets first discuss an overview of the two main areas: complex networks and evolutionary algorithms.

Author(s):  
Ivan Zelinka

In this chapter, we do synthesis of three partially different areas of research: complex networks, evolutionary computation and deterministic chaos. Ideas, results and methodologies reported and mentioned here are based on our previous results and experiments. We report here our latest results as well as propositions on further research that is in process in our group (http://navy.cs.vsb.cz/). In order to understand what is the main idea, lets first discuss an overview of the two main areas: complex networks and evolutionary algorithms.


Author(s):  
Lenka Skanderova ◽  
Ivan Zelinka

In this work, we investigate the dynamics of Differential Evolution (DE) using complex networks. In this pursuit, we would like to clarify the term complex network and analyze its properties briefly. This chapter presents a novel method for analysis of the dynamics of evolutionary algorithms in the form of complex networks. We discuss the analogy between individuals in populations in an arbitrary evolutionary algorithm and vertices of a complex network as well as between edges in a complex network and communication between individuals in a population. We also discuss the dynamics of the analysis.


Author(s):  
Ivan Zelinka ◽  
Donald Davendra ◽  
Jouni Lampinen ◽  
Roman Senkerik ◽  
Michal Pluhacek

2011 ◽  
Vol 20 (2) ◽  
pp. 127-140 ◽  
Author(s):  
Ivan Zelinka ◽  
Donald Davendra ◽  
Senkerik Roman ◽  
Jasek Roman ◽  
◽  
...  

Author(s):  
P. Collet

Evolutionary computation is an old field of computer science that started in the end of the 1960s nearly simultaneously in different parts of the world. Each paradigm has evolved separately, apparently without knowledge of what was happening elsewhere, until people finally got together and shared their experience. This resulted in strong trends that still survive, even though it is now possible to outline a generic structure for an evolutionary algorithm that is described in this chapter.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Wali Khan Mashwani ◽  
Zia Ur Rehman ◽  
Maharani A. Bakar ◽  
Ismail Koçak ◽  
Muhammad Fayaz

Bound-constrained optimization has wide applications in science and engineering. In the last two decades, various evolutionary algorithms (EAs) were developed under the umbrella of evolutionary computation for solving various bound-constrained benchmark functions and various real-world problems. In general, the developed evolutionary algorithms (EAs) belong to nature-inspired algorithms (NIAs) and swarm intelligence (SI) paradigms. Differential evolutionary algorithm is one of the most popular and well-known EAs and has secured top ranks in most of the EA competitions in the special session of the IEEE Congress on Evolutionary Computation. In this paper, a customized differential evolutionary algorithm is suggested and applied on twenty-nine large-scale bound-constrained benchmark functions. The suggested C-DE algorithm has obtained promising numerical results in its 51 independent runs of simulations. Most of the 2013 IEEE-CEC benchmark functions are tackled efficiently in terms of proximity and diversity.


2019 ◽  
Vol 33 (27) ◽  
pp. 1950331
Author(s):  
Shiguo Deng ◽  
Henggang Ren ◽  
Tongfeng Weng ◽  
Changgui Gu ◽  
Huijie Yang

Evolutionary processes of many complex networks in reality are dominated by duplication and divergence. This mechanism leads to redundant structures, i.e. some nodes share most of their neighbors and some local patterns are similar, called redundancy of network. An interesting reverse problem is to discover evolutionary information from the present topological structure. We propose a quantitative measure of redundancy of network from the perspective of principal component analysis. The redundancy of a community in the empirical human metabolic network is negatively and closely related with its evolutionary age, which is consistent with that for the communities in the modeling protein–protein network. This behavior can be used to find the evolutionary difference stored in cellular networks.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sima Ranjbari ◽  
Toktam Khatibi ◽  
Ahmad Vosough Dizaji ◽  
Hesamoddin Sajadi ◽  
Mehdi Totonchi ◽  
...  

Abstract Background Intrauterine Insemination (IUI) outcome prediction is a challenging issue which the assisted reproductive technology (ART) practitioners are dealing with. Predicting the success or failure of IUI based on the couples' features can assist the physicians to make the appropriate decision for suggesting IUI to the couples or not and/or continuing the treatment or not for them. Many previous studies have been focused on predicting the in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) outcome using machine learning algorithms. But, to the best of our knowledge, a few studies have been focused on predicting the outcome of IUI. The main aim of this study is to propose an automatic classification and feature scoring method to predict intrauterine insemination (IUI) outcome and ranking the most significant features. Methods For this purpose, a novel approach combining complex network-based feature engineering and stacked ensemble (CNFE-SE) is proposed. Three complex networks are extracted considering the patients' data similarities. The feature engineering step is performed on the complex networks. The original feature set and/or the features engineered are fed to the proposed stacked ensemble to classify and predict IUI outcome for couples per IUI treatment cycle. Our study is a retrospective study of a 5-year couples' data undergoing IUI. Data is collected from Reproductive Biomedicine Research Center, Royan Institute describing 11,255 IUI treatment cycles for 8,360 couples. Our dataset includes the couples' demographic characteristics, historical data about the patients' diseases, the clinical diagnosis, the treatment plans and the prescribed drugs during the cycles, semen quality, laboratory tests and the clinical pregnancy outcome. Results Experimental results show that the proposed method outperforms the compared methods with Area under receiver operating characteristics curve (AUC) of 0.84 ± 0.01, sensitivity of 0.79 ± 0.01, specificity of 0.91 ± 0.01, and accuracy of 0.85 ± 0.01 for the prediction of IUI outcome. Conclusions The most important predictors for predicting IUI outcome are semen parameters (sperm motility and concentration) as well as female body mass index (BMI).


2018 ◽  
Vol 27 (4) ◽  
pp. 643-666 ◽  
Author(s):  
J. LENGLER ◽  
A. STEGER

One of the easiest randomized greedy optimization algorithms is the following evolutionary algorithm which aims at maximizing a function f: {0,1}n → ℝ. The algorithm starts with a random search point ξ ∈ {0,1}n, and in each round it flips each bit of ξ with probability c/n independently at random, where c > 0 is a fixed constant. The thus created offspring ξ' replaces ξ if and only if f(ξ') ≥ f(ξ). The analysis of the runtime of this simple algorithm for monotone and for linear functions turned out to be highly non-trivial. In this paper we review known results and provide new and self-contained proofs of partly stronger results.


Author(s):  
Manfred Ehresmann ◽  
Georg Herdrich ◽  
Stefanos Fasoulas

AbstractIn this paper, a generic full-system estimation software tool is introduced and applied to a data set of actual flight missions to derive a heuristic for system composition for mass and power ratios of considered sub-systems. The capability of evolutionary algorithms to analyse and effectively design spacecraft (sub-)systems is shown. After deriving top-level estimates for each spacecraft sub-system based on heuristic heritage data, a detailed component-based system analysis follows. Various degrees of freedom exist for a hardware-based sub-system design; these are to be resolved via an evolutionary algorithm to determine an optimal system configuration. A propulsion system implementation for a small satellite test case will serve as a reference example of the implemented algorithm application. The propulsion system includes thruster, power processing unit, tank, propellant and general power supply system masses and power consumptions. Relevant performance parameters such as desired thrust, effective exhaust velocity, utilised propellant, and the propulsion type are considered as degrees of freedom. An evolutionary algorithm is applied to the propulsion system scaling model to demonstrate that such evolutionary algorithms are capable of bypassing complex multidimensional design optimisation problems. An evolutionary algorithm is an algorithm that uses a heuristic to change input parameters and a defined selection criterion (e.g., mass fraction of the system) on an optimisation function to refine solutions successively. With sufficient generations and, thereby, iterations of design points, local optima are determined. Using mitigation methods and a sufficient number of seed points, a global optimal system configurations can be found.


Sign in / Sign up

Export Citation Format

Share Document