A Secure and Optimized Proximity Mobile Payment Framework With Formal Verification

2018 ◽  
pp. 161-189
Author(s):  
Shaik Shakeel Ahamad ◽  
V.N. Sastry ◽  
Siba K. Udgata

In this paper the authors propose a Secure and Optimized Proximity Mobile Payment (SOPMP) Framework using NFC (Near Field Communication) technology, WPKI (Wireless Public Key Infrastructure), UICC (Universal Integrated Circuit Card). The novelty of this proposed mobile payment framework is messages are exchanged in the form of Digital Signature with Message Recovery (DSMR) and merchant sends Invoice in the form of Digital Invoice Certificate (DIC) (which is digitally signed by the merchant). The communication link between mobile phone and merchant POS (Point Of Sale) is NFC. Digital Signature with Message Recovery based on ECDSA eliminates the need of adopting PKI cryptosystems thereby reducing the consumption of resources i.e. it consumes less computational and communication cost. DSMR eliminates the need of certificates validation and removes the hurdle of PKI thereby reducing storage space, communication cost and computational cost. The authors proposed protocol ensures Authentication, Integrity, Confidentiality and Non Repudiation, achieves Identity protection from merchant and Eavesdropper, achieves Transaction privacy from Eavesdropper and Payment Gateway, achieves Payment Secrecy, Order Secrecy, forward secrecy, and prevents Double Spending, Overspending and Money laundering. In addition to these our proposed protocol withstands Replay, Man in the Middle and Impersonation attacks. The security properties of the proposed protocol have been verified using AVISPA and Scyther Tools and presented with results.

2014 ◽  
Vol 6 (1) ◽  
pp. 66-92 ◽  
Author(s):  
Shaik Shakeel Ahamad ◽  
V.N. Sastry ◽  
Siba K. Udgata

In this paper the authors propose a Secure and Optimized Proximity Mobile Payment (SOPMP) Framework using NFC (Near Field Communication) technology, WPKI (Wireless Public Key Infrastructure), UICC (Universal Integrated Circuit Card). The novelty of this proposed mobile payment framework is messages are exchanged in the form of Digital Signature with Message Recovery (DSMR) and merchant sends Invoice in the form of Digital Invoice Certificate (DIC) (which is digitally signed by the merchant). The communication link between mobile phone and merchant POS (Point Of Sale) is NFC. Digital Signature with Message Recovery based on ECDSA eliminates the need of adopting PKI cryptosystems thereby reducing the consumption of resources i.e. it consumes less computational and communication cost. DSMR eliminates the need of certificates validation and removes the hurdle of PKI thereby reducing storage space, communication cost and computational cost. The authors proposed protocol ensures Authentication, Integrity, Confidentiality and Non Repudiation, achieves Identity protection from merchant and Eavesdropper, achieves Transaction privacy from Eavesdropper and Payment Gateway, achieves Payment Secrecy, Order Secrecy, forward secrecy, and prevents Double Spending, Overspending and Money laundering. In addition to these our proposed protocol withstands Replay, Man in the Middle and Impersonation attacks. The security properties of the proposed protocol have been verified using AVISPA and Scyther Tools and presented with results.


2013 ◽  
Vol 9 (1) ◽  
pp. 54-84 ◽  
Author(s):  
Shaik Shakeel Ahamad ◽  
V. N. Sastry ◽  
Siba K. Udgata

In this paper the authors propose a Secure Mobile Payment Framework in Multi hop Cellular Network environment (which is an integration of cellular networks and mobile ad hoc networks) using Mobile Agent technology and Digital Signature with Message Recovery (DSMR) mechanism based on ECDSA mechanism. Secure communication in Multi hop Cellular Networks is a nontrivial task because of lack of infrastructure, no prior trust relationships among nodes due to the absence of a centralized authority. Mobile Agent technology and Digital Signature with Message Recovery based on ECDSA mechanism provides secure mobile payments in Multi hop Cellular Networks. Mobile Agent technology has many benefits such as bandwidth conservation, reduction of latency, reduction of completion time, Asynchronous (disconnected) communications. Digital Signature with Message Recovery based on ECDSA eliminates the need of adopting PKI cryptosystems. The proposed protocol ensures Authentication, Integrity, Confidentiality and Non Repudiation, achieves Identity protection from merchant and Eavesdropper, achieves Transaction privacy from Eavesdropper and Payment Gateway, achieves Payment Secrecy, Order Secrecy, forward secrecy, prevents Double Spending, Overspending and Money laundering. The security properties of the proposed protocol have been verified successfully using BAN Logic, AVISPA and Scyther Tools and presented with results.


2012 ◽  
Vol 6 (2) ◽  
pp. 64-94
Author(s):  
Shaik Shakeel Ahamad ◽  
V. N. Sastry ◽  
Siba K. Udgata

The authors propose a Secure and Optimized Mobile based Merchant Payment (SOMMP) Protocol using Signcryption scheme with Forward Secrecy (SFS) based on elliptic curve which consumes less computational and communication cost. In SOMMP client sends message in the form of TransCertC (Transaction Certificate) which is a X.509 SLC (X.509 Short Lived Certificate) thereby reducing the client interactions with the engaging parties thereby reducing the consumption of resources (from Client’s perspective) which are very scarce in Resource Constrained Devices like Mobile Phones. In SOMMP protocol WSLC (WPKI Short Lived Certificate) eliminates the need of certificates validation and removes the hurdle of PKI thereby reducing storage space, communication cost and computational cost. Their proposed SOMMP ensures Authentication, Integrity, Confidentiality and Non Repudiation, achieves Identity protection from merchant and Eavesdropper, achieves Transaction privacy from Eavesdropper and Payment Gateway, achieves Payment Secrecy, Order Secrecy, forward secrecy, and prevents Double Spending, Overspending and Money laundering. In addition to these SOMMP withstands Replay, Man in the Middle and Impersonation attacks. The security properties of the proposed SOMMP protocol have been verified using BAN Logic, AVISPA and Scyther Tools and presented with results.


NFC payment is the latest mobile payment technology for cashless transactions. Mobile payment is an application of mobile commerce which facilitates mobile commerce transactions by providing the mobile customer with a convenient means to pay. Many mobile payment methods have been proposed and implemented like user friendly, customer centric, merchant centric where security concerns are highly addressed. This chapter discusses the evolution of mobile payments that describes different technologies like SET, Barcode, Biometrics and also Near Field Communications that provides a platform for many applications for peer to peer transactions and other security features where confidentiality and trust are main concerns. Near Field Communication (NFC) provides means to close-range contactless identification and communications for mobile phones and other devices Also, use of NFC for short range communication allows the possible integration with existing Point-of-Sale equipment and the payment process from the customers and merchants perspective.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1431
Author(s):  
Ilkyu Kim ◽  
Sun-Gyu Lee ◽  
Yong-Hyun Nam ◽  
Jeong-Hae Lee

The development of biomedical devices benefits patients by offering real-time healthcare. In particular, pacemakers have gained a great deal of attention because they offer opportunities for monitoring the patient’s vitals and biological statics in real time. One of the important factors in realizing real-time body-centric sensing is to establish a robust wireless communication link among the medical devices. In this paper, radio transmission and the optimal characteristics for impedance matching the medical telemetry of an implant are investigated. For radio transmission, an integral coupling formula based on 3D vector far-field patterns was firstly applied to compute the antenna coupling between two antennas placed inside and outside of the body. The formula provides the capability for computing the antenna coupling in the near-field and far-field region. In order to include the effects of human implantation, the far-field pattern was characterized taking into account a sphere enclosing an antenna made of human tissue. Furthermore, the characteristics of impedance matching inside the human body were studied by means of inherent wave impedances of electrical and magnetic dipoles. Here, we demonstrate that the implantation of a magnetic dipole is advantageous because it provides similar impedance characteristics to those of the human body.


2015 ◽  
Vol 62 (3) ◽  
pp. 415-423 ◽  
Author(s):  
Min-Shiang Hwang ◽  
Shih-Ming Chen ◽  
Chi-Yu Liu

Sign in / Sign up

Export Citation Format

Share Document