antenna coupling
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 25)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 13 (22) ◽  
pp. 4614
Author(s):  
Anna Maria Büchner ◽  
Klaus Weidenhaupt ◽  
Bernd Gabler ◽  
Markus Limbach ◽  
Marco Schwerdt

In order to realize a compact L-band transponder design for the calibration of spaceborne synthetic aperture radar (SAR) systems, a novel antenna was developed by DLR. As with previous designs for different frequency bands, the future transponder is based on a two-antenna concept. This paper addresses the issue of antenna coupling between corrugated L-band horn antennas, which are operated in close proximity. The antenna coupling is analyzed via simulations and measurements by utilizing specifically defined coupling parameters. Additionally, improvements to further lower the mutual antenna coupling have been designed, tested, and are described in this paper.


Author(s):  
Xiao Hu ◽  
Yang Qiu ◽  
Qing-Lin Xu ◽  
Jin Tian

This paper presents an efficient hybrid method consisting of Lorentz reciprocity theorem, finite-difference-time-domain (FDTD) method, thin wire model, transmission line (TL) equations and transfer impedance model, which can be utilized to analyze the system-level transient responses of the microstrip antenna system with antenna, metallic enclosures, braided shielded cable, and lumped element, when illuminated by an external electromagnetic pulse (EMP). In order to avoid over-fine mesh generation and repeated modeling of the antenna in multiple simulations, Lorentz reciprocity theorem is employed to extract an equivalent source model of antenna coupling, thereby improving the computational efficiency. Then, the transfer impedance model and thin wire model are incorporated into the FDTD-TL method efficiently to deal with the back-door coupling through the shielding layer of feeding coaxial cable. Finally, the hybrid FDTD method combined with the extracted equivalent source of antenna coupling is utilized to solve the coupling responses of the whole antenna system. The results of numerical simulation are verified by comparing with the simulation results of CST CS. Then, considering the influence of different incident conditions of external EMP, the characteristics of the coupling response of the system are analyzed. The obtained coupling response information demonstrate that the proposed method is available for further designing electromagnetic protection of the inner circuits of the microstrip antenna system against the impact of external EMP.


2021 ◽  
Vol 10 (2) ◽  
pp. 820-827
Author(s):  
Tatiana K. Artemova ◽  
Aleksey S. Gvozdarev ◽  
Konstantin S. Artemov

The paper presents the results of the research of electromagnetic mutual coupling impact on the structure of the correlation matrices in multiantenna communication systems. Classical correlation structures employed in most of the up-to-date communication systems descriptions and designs usually assume unit autocorrelation and exponentially decreasing cross-correlation of antenna elements in the receiving/transmitting array. At the same time numerous studies had shown that these assumptions may not hold under certain conditions. The performed research relates the correlation effects with the imbalances of the array impedance matrix terms and studies the impact of antenna elements mutual electromagnetic interaction upon the diagonal (autocorrelation) and off-diagonal (cross-correlation) terms of correlation matrix, depending of the geometry of the array: number of elements and their spatial separation. To exemplify quantitative results the analysis was carried out for the 5G NR #78 band, being one of the most wideband subchannels in Under-6 GHz regime for 5G systems. The obtained results also justified the applicability of the banded correlation matrix model for wireless communications.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1431
Author(s):  
Ilkyu Kim ◽  
Sun-Gyu Lee ◽  
Yong-Hyun Nam ◽  
Jeong-Hae Lee

The development of biomedical devices benefits patients by offering real-time healthcare. In particular, pacemakers have gained a great deal of attention because they offer opportunities for monitoring the patient’s vitals and biological statics in real time. One of the important factors in realizing real-time body-centric sensing is to establish a robust wireless communication link among the medical devices. In this paper, radio transmission and the optimal characteristics for impedance matching the medical telemetry of an implant are investigated. For radio transmission, an integral coupling formula based on 3D vector far-field patterns was firstly applied to compute the antenna coupling between two antennas placed inside and outside of the body. The formula provides the capability for computing the antenna coupling in the near-field and far-field region. In order to include the effects of human implantation, the far-field pattern was characterized taking into account a sphere enclosing an antenna made of human tissue. Furthermore, the characteristics of impedance matching inside the human body were studied by means of inherent wave impedances of electrical and magnetic dipoles. Here, we demonstrate that the implantation of a magnetic dipole is advantageous because it provides similar impedance characteristics to those of the human body.


2020 ◽  
Author(s):  
Hua YANG ◽  
Xinjun Zhang ◽  
Chengming Qin ◽  
Yanping Zhao ◽  
Shuai Yuan ◽  
...  
Keyword(s):  

2020 ◽  
Vol 61 (2) ◽  
pp. 026003
Author(s):  
R.A. Tinguely ◽  
P.G. Puglia ◽  
N. Fil ◽  
S. Dowson ◽  
M. Porkolab ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document