Kinodynamic Motion Planning for a Two-Wheel-Drive Mobile Robot

Author(s):  
Kimiko Motonaka

Since a nonholonomic system such as a robot with two independent driving wheels includes complicated nonlinear terms generally, it is hard to realize a stable and tractable controller design. However, about a dynamic control method for the motion planning, it is guaranteed that a nonholonomic-controlled object can always be converged to an arbitrary point using a control method based on an invariant manifold. Based on it, the method called “kinodynamic motion planning” was proposed to converge the states of the two-wheeled mobile robot to the arbitrary target position while avoiding obstacles by combining the control based on the invariant manifold and the HPF. In this chapter, how to combine the invariant manifold control and the concept of the HPF is explained in detail, and the usefulness of the proposed approach is verified through some simulations.

2014 ◽  
Vol 02 (02) ◽  
pp. 201-216 ◽  
Author(s):  
Hai Lin

A new trend in the robotic motion planning literature is to use formal methods, like model checking, reactive synthesis and supervisory control theory, to automatically design controllers that drive a mobile robot to accomplish some high level missions in a guaranteed manner. This is also known as the correct-by-construction method. The high level missions are usually specified as temporal logics, particularly as linear temporal logic formulas, due to their similarity to human natural languages. This paper provides a brief overview of the recent developments in this newly emerged research area. A number of fundamental topics, such as temporal logic, model checking, bisimulation quotient transition systems and reachability controller design are reviewed. Additionally, the key challenges and possible future directions in this area are briefly discussed with references given for further reading.


Author(s):  
Roman Chertovskih ◽  
Anna Daryina ◽  
Askhat Diveev ◽  
Dmitry Karamzin ◽  
Fernando L. Pereira ◽  
...  

2020 ◽  
Vol 38 (9A) ◽  
pp. 1384-1395
Author(s):  
Rakaa T. Kamil ◽  
Mohamed J. Mohamed ◽  
Bashra K. Oleiwi

A modified version of the artificial Bee Colony Algorithm (ABC) was suggested namely Adaptive Dimension Limit- Artificial Bee Colony Algorithm (ADL-ABC). To determine the optimum global path for mobile robot that satisfies the chosen criteria for shortest distance and collision–free with circular shaped static obstacles on robot environment. The cubic polynomial connects the start point to the end point through three via points used, so the generated paths are smooth and achievable by the robot. Two case studies (or scenarios) are presented in this task and comparative research (or study) is adopted between two algorithm’s results in order to evaluate the performance of the suggested algorithm. The results of the simulation showed that modified parameter (dynamic control limit) is avoiding static number of limit which excludes unnecessary Iteration, so it can find solution with minimum number of iterations and less computational time. From tables of result if there is an equal distance along the path such as in case A (14.490, 14.459) unit, there will be a reduction in time approximately to halve at percentage 5%.


2010 ◽  
Vol 44-47 ◽  
pp. 321-325
Author(s):  
Liang Hua ◽  
Lin Lin Lv ◽  
Ju Ping Gu ◽  
Yu Jian Qiang

The key technilogies of ship-welding mobile robot applied to ship-building in plane block production line were researched and realized. The mechanical structure design of the robot was completed. The motion-controlling system of of two-wheel differential driving mobile robot was developed. A novel precision positioning control method of welding torch using ultrasonic motors was putforward. The mechanism and control-driven system of precision positioning system for welding torch were completed. The platform of obstacle avoidance navigation system was designed and the strategies of seam tracking, trajectory and posture adjustment were preliminary studied. The methods and results put forward in the paper could act as the base of deep research on the theories and technologies of ship-welding mobile robot.


Author(s):  
Xin-Sheng Ge ◽  
Li-Qun Chen

The motion planning problem of a nonholonomic multibody system is investigated. Nonholonomicity arises in many mechanical systems subject to nonintegrable velocity constraints or nonintegrable conservation laws. When the total angular momentum is zero, the control problem of system can be converted to the motion planning problem for a driftless control system. In this paper, we propose an optimal control approach for nonholonomic motion planning. The genetic algorithm is used to optimize the performance of motion planning to connect the initial and final configurations and to generate a feasible trajectory for a nonholonomic system. The feasible trajectory and its control inputs are searched through a genetic algorithm. The effectiveness of the genetic algorithm is demonstrated by numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document