Mobile Application for Ebola Virus Disease Diagnosis (EbolaDiag)

Author(s):  
Kwetishe Joro Danjuma ◽  
Solomon Sunday Oyelere ◽  
Elisha Sunday Oyelere ◽  
Teemu H. Laine

This chapter describes how the Ebola virus is considered extremely infectious with a series of physical and psychological traumas on the victims. Common clinical signs associated with the disease include a sudden fever, severe headaches, muscle pain, fatigue, diarrhea, vomiting, and unexplained hemorrhages. In Africa, with strained medical facilities and remote localities, prompt identification and diagnosis of the symptoms of Ebola in a suspected patient are important to the control of the epidemic and in curtailing further spread. This chapter presents the development of an Android mobile application called EbolaDiag (Ebola Diagnosis), which is capable of supporting the diagnosis, screening, and healthcare experts working on the frontline in contact tracing and monitoring of the spread of Ebola. Furthermore, EbolaDiag is suitable for aiding the strained medical facilities in endemic areas. In addressing this gap, the application provided a model for implementing such solutions in pandemic environments. Such a solution becomes more relevant and useful to combat Ebola and several other diseases in similar environments.

Author(s):  
Kwetishe Joro Danjuma ◽  
Solomon Sunday Oyelere ◽  
Elisha Sunday Oyelere ◽  
Teemu H. Laine

This chapter describes how the Ebola virus is considered extremely infectious with a series of physical and psychological traumas on the victims. Common clinical signs associated with the disease include a sudden fever, severe headaches, muscle pain, fatigue, diarrhea, vomiting, and unexplained hemorrhages. In Africa, with strained medical facilities and remote localities, prompt identification and diagnosis of the symptoms of Ebola in a suspected patient are important to the control of the epidemic and in curtailing further spread. This chapter presents the development of an Android mobile application called EbolaDiag (Ebola Diagnosis), which is capable of supporting the diagnosis, screening, and healthcare experts working on the frontline in contact tracing and monitoring of the spread of Ebola. Furthermore, EbolaDiag is suitable for aiding the strained medical facilities in endemic areas. In addressing this gap, the application provided a model for implementing such solutions in pandemic environments. Such a solution becomes more relevant and useful to combat Ebola and several other diseases in similar environments.


2017 ◽  
Vol 372 (1721) ◽  
pp. 20160300 ◽  
Author(s):  
Mikiko Senga ◽  
Alpha Koi ◽  
Lina Moses ◽  
Nadia Wauquier ◽  
Philippe Barboza ◽  
...  

Contact tracing in an Ebola virus disease (EVD) outbreak is the process of identifying individuals who may have been exposed to infected persons with the virus, followed by monitoring for 21 days (the maximum incubation period) from the date of the most recent exposure. The goal is to achieve early detection and isolation of any new cases in order to prevent further transmission. We performed a retrospective data analysis of 261 probable and confirmed EVD cases in the national EVD database and 2525 contacts in the Contact Line Lists in Kenema district, Sierra Leone between 27 April and 4 September 2014 to assess the performance of contact tracing during the initial stage of the outbreak. The completion rate of the 21-day monitoring period was 89% among the 2525 contacts. However, only 44% of the EVD cases had contacts registered in the Contact Line List and 6% of probable or confirmed cases had previously been identified as contacts. Touching the body fluids of the case and having direct physical contact with the body of the case conferred a 9- and 20-fold increased risk of EVD status, respectively. Our findings indicate that incompleteness of contact tracing led to considerable unmonitored transmission in the early months of the epidemic. To improve the performance of early outbreak contact tracing in resource poor settings, our results suggest the need for prioritized contact tracing after careful risk assessment and better alignment of Contact Line Listing with case ascertainment and investigation. This article is part of the themed issue ‘The 2013–2016 West African Ebola epidemic: data, decision-making and disease control’.


2016 ◽  
Vol 77 ◽  
pp. 9-14 ◽  
Author(s):  
Pascal Cherpillod ◽  
Manuel Schibler ◽  
Gaël Vieille ◽  
Samuel Cordey ◽  
Aline Mamin ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Enzo Maria Vingolo ◽  
Giuseppe Alessio Messano ◽  
Serena Fragiotta ◽  
Leopoldo Spadea ◽  
Stefano Petti

Ebola virus disease (EVD—formerly known as Ebola hemorrhagic fever) is a severe hemorrhagic fever caused by lipid-enveloped, nonsegmented, negative-stranded RNA viruses belonging to the genusEbolavirus. Case fatality rates may reach up to 76% of infected individuals, making this infection a deadly health problem in the sub-Saharan population. At the moment, there are still no indications on ophthalmological clinical signs and security suggestions for healthcare professionals (doctors and nurses or cooperative persons). This paper provides a short but complete guide to reduce infection risks.


2014 ◽  
Vol 53 (1) ◽  
pp. 4-8 ◽  
Author(s):  
Eileen M. Burd

An epidemic of Ebola virus disease is occurring in Western Africa on a scale not seen before, particularly in the countries of Guinea, Liberia, and Sierra Leone. The continued spread is facilitated by insufficient medical facilities, poor sanitation, travel, and unsafe burial practices. Several patients diagnosed with Ebola virus disease in Africa have been evacuated to the United States for treatment, and several other patients have been diagnosed in the United States. It is important for laboratories to be aware of available tests, especially those granted emergency use authorization, as hospitals prepare protocols for the diagnosis and management of high-risk patients.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Velma K. Lopez ◽  
Sharmila Shetty ◽  
Angelo Thon Kouch ◽  
Matthew Tut Khol ◽  
Richard Lako ◽  
...  

Abstract Background The world’s second largest Ebola outbreak occurred in the Democratic Republic of Congo from 2018 to 2020. At the time, risk of cross-border spread into South Sudan was very high. Thus, the South Sudan Ministry of Health scaled up Ebola preparedness activities in August 2018, including implementation of a 24-h, toll-free Ebola virus disease (EVD) hotline. The primary purpose was the hotline was to receive EVD alerts and the secondary goal was to provide evidence-based EVD messages to the public. Methods To assess whether the hotline augmented Ebola preparedness activities in a protracted humanitarian emergency context, we reviewed 22 weeks of call logs from January to June 2019. Counts and percentages were calculated for all available data. Results The hotline received 2114 calls during the analysis period, and an additional 1835 missed calls were documented. Callers used the hotline throughout 24-h of the day and were most often men and individuals living in Jubek state, where the national capital is located. The leading reasons for calling were to learn more about EVD (68%) or to report clinical signs or symptoms (16%). Common EVD-related questions included EVD signs and symptoms, transmission, and prevention. Only one call was documented as an EVD alert, and there was no documentation of reported symptoms or whether the person met the EVD case definition. Conclusions Basic surveillance information was not collected from callers. To trigger effective outbreak investigation from hotline calls, the hotline should capture who is reporting and from where, symptoms and travel history, and whether this information should be further investigated. Electronic data capture will enhance data quality and availability of information for review. Additionally, the magnitude of missed calls presents a major challenge. When calls are answered, there is potential to provide health communication, so risk communication needs should be considered. However, prior to hotline implementation, governments should critically assess whether their hotline would yield actionable data and if other data sources for surveillance or community concerns are available.


2016 ◽  
Vol 65 (15) ◽  
pp. 402 ◽  
Author(s):  
Rebecca Levine ◽  
Margherita Ghiselli ◽  
Agnes Conteh ◽  
Bobson Turay ◽  
Andrew Kemoh ◽  
...  

2018 ◽  
Vol 11 (07) ◽  
pp. 1850093 ◽  
Author(s):  
T. Berge ◽  
A. J. Ouemba Tassé ◽  
H. M. Tenkam ◽  
J. Lubuma

More than 20 outbreaks of Ebola virus disease have occurred in Africa since 1976, and yet no adequate treatment is available. Hence, prevention, control measures and supportive treatment remain the only means to avoid the disease. Among these measures, contact tracing occupies a prominent place. In this paper, we propose a simple mathematical model that incorporates imperfect contact tracing, quarantine and hospitalization (or isolation). The control reproduction number [Formula: see text] of each sub-model and for the full model are computed. Theoretically, we prove that when [Formula: see text] is less than one, the corresponding model has a unique globally asymptotically stable disease-free equilibrium. Conversely, when [Formula: see text] is greater than one, the disease-free equilibrium becomes unstable and a unique globally asymptotically stable endemic equilibrium arises. Furthermore, we numerically support the analytical results and assess the efficiency of different control strategies. Our main observation is that, to eradicate EVD, the combination of high contact tracing (up to 90%) and effective isolation is better than all other control measures, namely: (1) perfect contact tracing, (2) effective isolation or full hospitalization, (3) combination of medium contact tracing and medium isolation.


2017 ◽  
Vol 11 (6) ◽  
pp. e0005597 ◽  
Author(s):  
Caitlin M. Wolfe ◽  
Esther L. Hamblion ◽  
Jacqueline Schulte ◽  
Parker Williams ◽  
Augustine Koryon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document