Investigating the Impacts of DEM Type, Resolution, and Noise on Extracted Hydro-Geomorphologic Parameters of Watersheds via GIS

Author(s):  
Vahid Nourani ◽  
Safa Mokhtarian Asl ◽  
Maryam Khosravi Sorkhkolaee ◽  
Aida Hosseini Baghanam ◽  
Masoud Mehrvand

Water resources management is dependent on knowledge and understanding of water quantity and quality information with the latest developments in information technology such as geographic information system (GIS) to develop effective hydrological modeling within the water-based systems. The efficiency of such hydrological modeling relies on the accuracy of applied data. In this way, the application of low-quality data in developing models for integrated management of water resources can impose irreparable financial and human resources and environmental costs in the catchment area. Thus, in regions that shortage of data is the issue, semi-distributed modeling is a useful tool. In this chapter, three aims are followed: (1) effect of digital elevation model (DEM) type and resolution on extracted hydro-geomorphologic parameters, (2) effect of wavelet-based de-noising method on extracted hydro-geomorphologic parameters, (3) determination of the optimal cell size to extract topographic attributes with good agreement to the real features.

2020 ◽  
Vol 13 (2) ◽  
pp. 713
Author(s):  
Danilo Da Silva Dutra ◽  
André Ricardo Furlan ◽  
Luís Eduardo De Souza Robaina

O relevo é a base onde todas as populações vivem e desenvolvem suas atividades, derivando dessa relação vantagens e desvantagens, daí a importância de conhecê-lo através do estudo de suas diferentes formas e elementos. Nesse contexto insere-se a importância de metodologias para o seu estudo, sendo que atualmente vivencia-se a expressividade de dados disponíveis para aplicação de geoprocessamento. A partir das geotecnologias pode-se empreender diversas análises sobre o relevo, destacando-se nesse contexto, a proposta dos geomorphons a qual foi aplicada na bacia hidrográfica do arroio Pantanoso. O objetivo da pesquisa é a identificação e análise dos elementos do relevo definido por geomorphons, quais sejam: 1) Planos, 2) Picos, 3) Cristas, 4) Ressaltos, 5) Crista secundária, 6) Encostas, 7) Escavado, 8) Base de encosta, 9) Vales e 10) Fosso. A determinação dos geomorphons foi a partir do processamento em ambiente SIG do Modelo Digital de Elevação (MDE) do Shuttle Radar Topograph Mission (SRTM) com resolução espacial 3 arcsec (90 metros), “L” Lookup (distância em metros) definiu-se como de 20 pixels (1800 metros) e o “T” Theresholdt (nivelamento em graus) definiu-se em 2º. Para visualização do comportamento dos elementos do relevo na área de estudo realizaram-se trabalhos de campo, o que contribuiu para evidenciar a padronização desses elementos. Os quatro elementos geomorphons mais representativos são encostas, vales, cristas e planos. Subdivision of relief elements through the proposal of geomorphons: river basin of arroio Pantanoso - Canguçu/RS A B S T R A C TRelief is the basis where all populations live and develop their activities, deriving from this relation advantages and disadvantages, hence the importance of knowing it through the study of its different forms and elements. In this context, the importance of methodologies for its study is inserted and geoprocessing application for data available for is currently experienced. From the geotechnologies one can undertake several analyzes on the relief, highlighting in this context, the proposal of the geomorphons which was applied in Pantanoso stream basin. The objective of the research is to identify and analyze the elements of the relief defined by geomorphons, namely: 1) Flats, 2) Peaks, 3) Ridges, 4) Shoulders, 5) Spurs, 6)Slopes, 7) Hollows, 8) Footslope, 9) Valley and 10) Pits. The determination of the geomorphons was based on the GIS environment of the Shuttle Radar Topograph Mission (SRTM) Digital Elevation Model (DEM) with spatial resolution 3 arcsec (90 meters), "L" Lookup (distance in meters) was defined as of 20 pixels (1800 meters) and the "T" Theresholdt (leveling in degrees) was defined in 2º. In order to visualize the behavior of the relief elements in the study area, fieldwork was carried out, which contributed to the standardization of these elements. The four most representative geomorphons, which are: Slopes, Valleys, Ridges and Flat.Keywords: SIG, Geomorphons; Canguçu/RS; relief


2016 ◽  
Author(s):  
Constantijn J. Berends ◽  
Roderik S. W. van de Wal

Abstract. We present and evaluate several optimizations to a standard flood-fill algorithm in terms of computational efficiency. As an example, we determine the land/ocean-mask for a 1 km resolution digital elevation model (DEM) of North America and Greenland, a geographical area of roughly 7000 by 5000 km (roughly 35 million elements), about half of which is covered by ocean. Determining the land/ocean-mask with our improved flood-fill algorithm reduces computation time by 90 % relative to using a standard stack-based flood-fill algorithm. In another experiment, we use the bedrock elevation, ice thickness and geoid perturbation fields from the output of a coupled ice-sheet–sea-level equation model at 30,000 years before present and determine the extent of Lake Agassiz, using both the standard and improved versions of the flood-fill algorithm. We show that several optimizations to the flood-fill algorithm used for filling a depression up to a water level, that is not defined at forehand, decrease the computation time by up to 99 %. The resulting reduction in computation time allows determination of the extent and volume of depressions in a DEM over large geographical grids or repeatedly over long periods of time, where computation time might otherwise be a limiting factor.


2007 ◽  
Vol 46 ◽  
pp. 303-308 ◽  
Author(s):  
Gernot R. Koboltschnig ◽  
Wolfgang Schöner ◽  
Massimiliano Zappa ◽  
Hubert Holzmann

AbstractThis paper presents a comparative study at a small and highly glacierized catchment area in the Austrian Alps, where runoff under the extreme hot and dry conditions of summer 2003 was simulated based on two different glacier extents: the 2003 glacier extent and the 29% larger 1979 extent. Runoff was simulated applying the hydrological water balance model PREVAH at a high temporal resolution. For this purpose, the catchment area was subdivided into hydrological response units based on digital elevation model and land-cover data. The model was driven by meteorological data from the observatory at Hoher Sonnblick, situated at the highest point of the catchment area (3106ma.s.l.). We were interested in the effect the change in glacier extent would have on the annual and monthly water balance and the hydrograph of hourly discharges. Results of the 2003 and the hypothetical 1979 simulation show main differences in runoff for the period July–August depending on a higher ice-melt contribution. Due to the same meteorological input, both simulations calculate the same snow accumulation and snowmelt. Annual discharge in 1979 would have been 12% higher and hourly runoff up to 35% higher than in 2003.


2001 ◽  
Vol 240 (3-4) ◽  
pp. 225-242 ◽  
Author(s):  
R Turcotte ◽  
J.-P Fortin ◽  
A.N Rousseau ◽  
S Massicotte ◽  
J.-P Villeneuve

2014 ◽  
Vol 16 (6) ◽  
pp. 1343-1358 ◽  
Author(s):  
L. Cui ◽  
Y. P. Li ◽  
G. H. Huang ◽  
Y. Huang

Topography plays a critical role in controlling water dispersion and soil movement in hydrologic modeling for water resources management with raster-based digital elevation model (DEM). This study aims to model effects of DEM resolution on runoff simulation through coupling fuzzy analysis technique with a topography based rainfall–runoff model (TOPMODEL). Different levels of DEM grid sizes between 30 m and 200 m are examined, and the results indicate that 30 m DEM resolution is the best for all catchments. Results demonstrate that the DEM resolution could have significant influence on the TOPMODEL rainfall–runoff simulation. Fuzzy analysis technique is used to further examine the uncertain DEM resolution based on considering Nash, sum of squared error, and sum of absolute error values of TOPMODEL. The developed model is calibrated and validated against observed flow during the period 2010–2012, and generally performed acceptably for model Nash–Sutcliffe value. The proposed method is useful for studying hydrological processes of watershed associated with topography uncertainty and providing support for identifying proper water resources management strategy.


2018 ◽  
Author(s):  
Ralf Loritz ◽  
Hoshin Gupta ◽  
Conrad Jackisch ◽  
Martijn Westhoff ◽  
Axel Kleidon ◽  
...  

Abstract. The increasing diversity and resolution of spatially distributed data on terrestrial systems greatly enhances the potential of hydrological modeling. Optimal and parsimonious use of these data sources implies, however, that we better understand (a) which system characteristics exert primary controls on hydrological dynamics and (b) to what level of detail do those characteristics need to be represented in a model. In this study we develop and test an approach to explore these questions that draws upon information theoretic and thermodynamic reasoning, using spatially distributed topographic information as a straightforward example. Specifically, we subdivide a meso-scale catchment into 105 hillslopes and represent each by a two dimensional numerical hillslope model. These hillslope models differ exclusively with respect to topography related parameters derived from a digital elevation model; the remaining setup and meteorological forcing for each are identical. We analyze the degree of similarity of simulated discharge and storage among the hillslopes as a function of time by examining the Shannon information entropy. We furthermore derive a compressed catchment model by clustering the hillslope models into functional groups of similar runoff generation using normalized mutual information as a distance measure. Our results reveal that, within our given model environment, only a portion of the entire amount of topographic information stored within a digital elevation model is relevant for the simulation of distributed runoff and storage dynamics. This manifests through a possible compression of the model ensemble from the entire set of 105 hillslopes to only 6 hillslopes, each representing a different functional group, which leads to no substantial loss in model performance. Importantly, we find that the concept of hydrological similarity is not necessarily time-invariant. On the contrary, the Shannon entropy as measure for diversity in the simulation ensemble shows a distinct annual pattern, with periods of highly redundant simulations, reflecting coherent and organized dynamics, and periods where hillslopes operate in distinctly different ways. We conclude that the proposed approach provides a powerful framework for understanding and diagnosing how and when process organization and functional similarity of hydrological systems emerges in time. Our approach is neither restricted to the model, nor to model targets or the data source we selected in this study. Overall, we propose that the concepts of hydrological systems acting similarly (and thus giving rise to redundancy) or displaying unique functionality (and thus being irreplaceable) are not mutually exclusive. They are in fact of complementary nature, and systems operate by gradually changing to different levels of organization in time.


2019 ◽  
Vol 4 (1) ◽  
pp. 10
Author(s):  
Fakhrul Rozi Yamali ◽  
Amri Syakban ◽  
Eko Sugianto

Permasalahan yang terjadi pada sistim drainase Kecamatan Jambi Timur yaitu setiap tahunnya selalu tergenang air, khususnya pada musim penghujan. Pada sejumlah saluran drainase, begitu hujan besar terjadi air meluap keluar dan menggenangi ruas jalan. Faktor yang mempengaruhi daya tampung air tersebut, salah satunya adalah banyak saluran yang sudah menebal endapan lumpurnya.Dalam analisa curah hujan untuk menentukan debit banjir rencana, data curah hujan yang dipergunakan adalah curah hujan maksimum tahunan (Annual Maximum Series). Untuk perhitungan curah hujan rencana, digunakan Metode Distribusi Normal, Distribusi Log Normal, Distribusi Log–Pearson III dan Distribusi Gumbel. Untuk  hujanyang terjadi selama 5 menit sampai 2 jam, persamaan intensitas durasi hujan menggunakan Rumus Talbot, Ishiguro, dan Sherman. Luas area daerah tangkapan (Catchment Area) didapat dengan menggunakan Software Global Mapper 12 berdasarkan data Digital Elevation Model SRTM_57_13. Penggunaan Metode Rasional pada daerah pengaliran dengan beberapa sub daerah pengaliran dapat dilakukan dengan pendekatan nilai C gabungan atau C rata–rata. Adapun rumusan perhitungan debit rencana menggunakan Metode Rasional. Nilai debit rencana akan dibandingkan dengan nilai debit kapasitas yang telah dianalisa berdasarkan analisis hidrologi dan hidrolika. Jika nilai Debit Kapasitas (Qsaluran) lebih kecil dari nilai Debit Rencana (Qrencana), maka dilakukan dimensi ulang saluran drainase.


Author(s):  
Sandra Cristina Deodoro ◽  
William Zanete Bertolini ◽  
Plinio da Costa Temba

Quaternary formations (detrital and weathered materials) are an important natural resource for different areas of scientific investigation, from understanding their relation to erosive processes and morphodynamic processes that create landforms or to understanding the history of the first human settlements (geoarcheology). Quaternary coverings can be formed in situ or be transported by external geologic agents. Regarding soils, Quaternary formations are related to landscape topography and are transformed according to the characteristics of this topography. Hence, classifying and mapping these soils is not always easy. The present article aims to map the Quaternary formations along a stretch of the Uruguay River basin  known as Volta Grande (SC/RS-Brazil), by using  topographic attributes derived from the SRTM GL1-Up Sampled digital elevation model, soil particle-size analysis, and a generated Multiresolution Index of Valley Bottom Flatness (MRVBF) index . The results of the analysis show that: (i) colluvium is the predominant Quaternary formation in the study area; (ii) there is a predominance of clay, corroborating previous studies of the region; (iii) the spatial distribution of the study area’s  Quaternary formations reflect local slope dynamics based on morphology and topographic position; and, (iv) the existence of colluvium-alluvium on the Uruguay River’s banks indicates that slope attributes contributed to the pedogeomorphological dynamics of the study area and not only fluvial dynamics. Based on the results, the methodology applied in this study might be useful for pedogeomorphological studies, notably in the analysis and mapping of Quaternary formations, despite some of its limitations.


Sign in / Sign up

Export Citation Format

Share Document