Single Stage Systems Markovian Case

In Chapter 3, the authors show the expressions of queueing theory for Markovian systems with a single stage. The chapter begins with definitions of stochastic processes and Markov chains; then; they present the models for calculating the work in process and the cycle time of systems with a single server, multiple servers, and systems with restriction on queue size. Later, the chapter explores heuristic rules to estimate the capacity of a system. The chapter ends with the monetary analysis of the system and the optimum selection of capacity.

Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 112 ◽  
Author(s):  
Alex Iglesias ◽  
Zoltan Dombovari ◽  
German Gonzalez ◽  
Jokin Munoa ◽  
Gabor Stepan

Cutting capacity can be seriously limited in heavy duty face milling processes due to self-excited structural vibrations. Special geometry tools and, specifically, variable pitch milling tools have been extensively used in aeronautic applications with the purpose of removing these detrimental chatter vibrations, where high frequency chatter related to slender tools or thin walls limits productivity. However, the application of this technique in heavy duty face milling operations has not been thoroughly explored. In this paper, a method for the definition of the optimum angles between inserts is presented, based on the optimum pitch angle and the stabilizability diagrams. These diagrams are obtained through the brute force (BF) iterative method, which basically consists of an iterative maximization of the stability by using the semidiscretization method. From the observed results, hints for the selection of the optimum pitch pattern and the optimum values of the angles between inserts are presented. A practical application is implemented and the cutting performance when using an optimized variable pitch tool is assessed. It is concluded that with an optimum selection of the pitch, the material removal rate can be improved up to three times. Finally, the existence of two more different stability lobe families related to the saddle-node and flip type stability losses is demonstrated.


1987 ◽  
Vol 24 (03) ◽  
pp. 758-767
Author(s):  
D. Fakinos

This paper studies theGI/G/1 queueing system assuming that customers have service times depending on the queue size and also that they are served in accordance with the preemptive-resume last-come–first-served queue discipline. Expressions are given for the limiting distribution of the queue size and the remaining durations of the corresponding services, when the system is considered at arrival epochs, at departure epochs and continuously in time. Also these results are applied to some particular cases of the above queueing system.


2003 ◽  
Vol 17 (4) ◽  
pp. 487-501 ◽  
Author(s):  
Yang Woo Shin ◽  
Bong Dae Choi

We consider a single-server queue with exponential service time and two types of arrivals: positive and negative. Positive customers are regular ones who form a queue and a negative arrival has the effect of removing a positive customer in the system. In many applications, it might be more appropriate to assume the dependence between positive arrival and negative arrival. In order to reflect the dependence, we assume that the positive arrivals and negative arrivals are governed by a finite-state Markov chain with two absorbing states, say 0 and 0′. The epoch of absorption to the states 0 and 0′ corresponds to an arrival of positive and negative customers, respectively. The Markov chain is then instantly restarted in a transient state, where the selection of the new state is allowed to depend on the state from which absorption occurred.The Laplace–Stieltjes transforms (LSTs) of the sojourn time distribution of a customer, jointly with the probability that the customer completes his service without being removed, are derived under the combinations of service disciplines FCFS and LCFS and the removal strategies RCE and RCH. The service distribution of phase type is also considered.


2021 ◽  
Author(s):  
K Harshavardhana Reddy ◽  
Sachin Sharma ◽  
B. Madhuri ◽  
K Shivarama Krishna

2021 ◽  
pp. 2813-2823
Author(s):  
Firas A. Hadi ◽  
Zaid F. Makki ◽  
Rafa A. Al-Baldawi

The main objective of this paper is present a novel method to choice a certain wind turbine for a specific site by using normalized power and capacity factor curves. The site matching is based on identifying the optimum turbine rotation speed parameters from turbine performance index (TPI) curve, which is obtained from the higher values of normalized power and capacity factor curves. Wind Turbine Performance Index a new ranking parameter, is defined to optimally match turbines to wind site. The relations (plots) of normalized power, capacity factor, and turbine performance index versus normalized rated wind speed are drawn for a known value of Weibull shape parameter of a site, thus a superior method is used for Weibull parameters estimation which is called Equivalent Energy Method (EEM).


Sign in / Sign up

Export Citation Format

Share Document