scholarly journals Preserving User Privacy and Security in Context-Aware Mobile Platforms

Author(s):  
Prajit Kumar Das ◽  
Dibyajyoti Ghosh ◽  
Pramod Jagtap ◽  
Anupam Joshi ◽  
Tim Finin

Contemporary smartphones are capable of generating and transmitting large amounts of data about their users. Recent advances in collaborative context modeling combined with a lack of adequate permission model for handling dynamic context sharing on mobile platforms have led to the emergence of a new class of mobile applications that can access and share embedded sensor and context data. Most of the time such data is used for providing tailored services to the user but it can lead to serious breaches of privacy. We use Semantic Web technologies to create a rich notion of context. We also discuss challenges for context aware mobile platforms and present approaches to manage data flow on these devices using semantically rich fine-grained context-based policies that allow users to define their privacy and security need using tools we provide.

Author(s):  
Prajit Kumar Das ◽  
Dibyajyoti Ghosh ◽  
Pramod Jagtap ◽  
Anupam Joshi ◽  
Tim Finin

Contemporary smartphones are capable of generating and transmitting large amounts of data about their users. Recent advances in collaborative context modeling combined with a lack of adequate permission model for handling dynamic context sharing on mobile platforms have led to the emergence of a new class of mobile applications that can access and share embedded sensor and context data. Most of the time such data is used for providing tailored services to the user but it can lead to serious breaches of privacy. We use Semantic Web technologies to create a rich notion of context. We also discuss challenges for context aware mobile platforms and present approaches to manage data flow on these devices using semantically rich fine-grained context-based policies that allow users to define their privacy and security need using tools we provide.


Author(s):  
Prajit Kumar Das ◽  
Dibyajyoti Ghosh ◽  
Pramod Jagtap ◽  
Anupam Joshi ◽  
Tim Finin

Contemporary smartphones are capable of generating and transmitting large amounts of data about their users. Recent advances in collaborative context modeling combined with a lack of adequate permission model for handling dynamic context sharing on mobile platforms have led to the emergence of a new class of mobile applications that can access and share embedded sensor and context data. Most of the time such data is used for providing tailored services to the user but it can lead to serious breaches of privacy. We use Semantic Web technologies to create a rich notion of context. We also discuss challenges for context aware mobile platforms and present approaches to manage data flow on these devices using semantically rich fine-grained context-based policies that allow users to define their privacy and security need using tools we provide.


Author(s):  
Muhammad Aminu Lawal ◽  
Syed Raheel Hassan

Smart grids are conceived to ensure smarter generation, transmission, distribution, and consumption of electricity. It integrates the traditional electricity grid with information and communication technology. This enables a two-way communication among the smart grid entities, which translates to exchange of information about fine-grained user energy consumption between the smart grid entities. However, the flow of user energy consumption data may lead to the violation of user privacy. Inference on such data can expose the daily habits and types of appliances of users. Thus, several privacy preservation schemes have been proposed in the literature to ensure the privacy and security requirements of smart grid users. This chapter provides a review of some privacy preservation schemes. The schemes operational procedure, strengths, and weaknesses are discussed. A taxonomy, comparison table, and comparative analysis are also presented. The comparative analysis gives an insight on open research issues in privacy preservation schemes.


2014 ◽  
Vol 11 (1) ◽  
pp. 171-193 ◽  
Author(s):  
Grzegorz Nalepa ◽  
Szymon Bobek

With the rapid evolution of mobile devices, the concept of context aware applications has gained a remarkable popularity in recent years. Smartphones and tablets are equipped with a variety of sensors including accelerometers, gyroscopes, and GPS, pressure gauges, light and GPS sensors. Additionally, the devices become computationally powerful which allows real-time processing of data gathered by their sensors. Universal network access viaWiFi hot-spots and GSM network makes mobile devices perfect platforms for ubiquitous computing. Most of existing frameworks for context-aware systems, are usually dedicated to static, centralized, clientserver architectures. However, mobile platforms require from the context modeling language and inference engine to be simple and lightweight. The model should also be powerful enough to allow not only solving simple context identification tasks but more complex reasoning. The original contribution of the paper is a proposal of a new rule-based context reasoning platform tailored to the needs of such intelligent distributed mobile computing devices. It contains a proposal of a learning middleware supporting context acquisition. The platform design is based on a critical review and evaluation of existing solutions given in this paper. A preliminary evaluation of the platform is given along with use cases including a social system supporting crime detection and investigation.


Author(s):  
Muhammad Aminu Lawal ◽  
Syed Raheel Hassan

Smart grids are conceived to ensure smarter generation, transmission, distribution, and consumption of electricity. It integrates the traditional electricity grid with information and communication technology. This enables a two-way communication among the smart grid entities, which translates to exchange of information about fine-grained user energy consumption between the smart grid entities. However, the flow of user energy consumption data may lead to the violation of user privacy. Inference on such data can expose the daily habits and types of appliances of users. Thus, several privacy preservation schemes have been proposed in the literature to ensure the privacy and security requirements of smart grid users. This chapter provides a review of some privacy preservation schemes. The schemes operational procedure, strengths, and weaknesses are discussed. A taxonomy, comparison table, and comparative analysis are also presented. The comparative analysis gives an insight on open research issues in privacy preservation schemes.


Author(s):  
Pierre E. Abi-Char ◽  
Bachar El-Hassan ◽  
Mounir Mokhtari

The growing evolution of information and communication technology (ICT) systems towards more pervasive and ubiquitous infrastructures contribute significantly to the deployment of services anywhere, at anytime and for anyone. To provide personalized services in such infrastructures, we should consider both user’s privacy and security requirements and context-awareness environment. This can be really achieved owing to context awareness systems which allow us to benefit from sensing and mobile technologies to derive more accurate data about the user and his/her location. While the availability of contextual information may introduce new threats against security and privacy, it can also be used to improve dynamic, adaptive and autonomic aspects of security, and user privacy. Moreover, context-aware information offers new opportunities for the establishment of trust relationship among involved entities (e.g., users, devices, and platforms). As context awareness represents new challenges and new opportunities regarding privacy, trust and security of users in pervasive computing environments (PCE), the main purpose of this chapter aims to survey each of the involved issues to understand and address the interdependencies among them.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2664 ◽  
Author(s):  
Luis Belem Pacheco ◽  
Eduardo Pelinson Alchieri ◽  
Priscila Mendez Barreto

The use of Internet of Things (IoT) is rapidly growing and a huge amount of data is being generated by IoT devices. Cloud computing is a natural candidate to handle this data since it has enough power and capacity to process, store and control data access. Moreover, this approach brings several benefits to the IoT, such as the aggregation of all IoT data in a common place and the use of cloud services to consume this data and provide useful applications. However, enforcing user privacy when sending sensitive information to the cloud is a challenge. This work presents and evaluates an architecture to provide privacy in the integration of IoT and cloud computing. The proposed architecture, called PROTeCt—Privacy aRquitecture for integratiOn of internet of Things and Cloud computing, improves user privacy by implementing privacy enforcement at the IoT devices instead of at the gateway, as is usually done. Consequently, the proposed approach improves both system security and fault tolerance, since it removes the single point of failure (gateway). The proposed architecture is evaluated through an analytical analysis and simulations with severely constrained devices, where delay and energy consumption are evaluated and compared to other architectures. The obtained results show the practical feasibility of the proposed solutions and demonstrate that the overheads introduced in the IoT devices are worthwhile considering the increased level of privacy and security.


Sign in / Sign up

Export Citation Format

Share Document