Methodology of Climate Change Impact Assessment on Forests

Author(s):  
Mostafa Jafari

Climate change is one of the challenging issues in various countries. Climate change and climate variability and global warming and its effects on natural resources, plants, animals, and on human life are among the subjects that received the attention of scientists and politicians in recent years. Climate change challenges need to be considered in various dimensions. To both understand the present climate and to predict future climate change, it is necessary to have both theory and empirical observation. Any study of climate change involves the construction (or reconstruction) of time series of climate data. How these climate data vary across time provides a measure (either quantitative or qualitative) of climate change. Types of climate data include temperature, precipitation (rainfall), wind, humidity, evapotranspiration, pressure, and solar irradiance. This chapter explores a methodology of measuring climate change's impact on forests.

2021 ◽  
Vol 21 (1) ◽  
pp. 53-71
Author(s):  
Shunya Koseki ◽  
Priscilla A. Mooney ◽  
William Cabos ◽  
Miguel Ángel Gaertner ◽  
Alba de la Vara ◽  
...  

Abstract. This study focuses on a single Mediterranean hurricane (hereafter medicane), to investigate its response to global warming during the middle of the 21st century and assesses the effects of a warmer ocean and a warmer atmosphere on its development. Our investigation uses the state-of-the-art regional climate model WRF to produce the six-member, multi-physics ensembles. Results show that our model setup simulates a realistic cyclone track and the transition from an initial disturbance to a tropical-like cyclone with a deep warm core. However, the simulated transition occurs earlier than for the observed medicane. The response of the medicane to future climate change is investigated with a pseudo global warming (PGW) approach. This is the first application of the PGW framework to medicanes. The PGW approach adds a climate change delta (defined as difference between future and present climate) to WRF's boundary conditions which is obtained for all prognostic variables using the mean change in an ensemble of CMIP5 simulations. A PGW simulation where the climate change delta is added to all prognostic variables (PGWALL) shows that most of the medicane characteristics moderately intensify, e.g. surface wind speed, uptake of water vapour, and precipitation. However, the minimum sea level pressure (SLP) is almost identical to that under present climate conditions. Two additional PGW simulations were undertaken; One simulation adds the projected change in sea surface and skin temperature only (PGWSST) while the second simulation adds the PGW changes to only atmospheric variables (PGWATMS); i.e. we use present-day sea surface temperatures. These simulations show opposing responses of the medicane. In PGWSST, the medicane is more intense than PGWALL as indicated by lower SLP values, the stronger surface wind, and the more intense evaporation and precipitation. In contrast, the medicane in PGWATMS still transitions into a tropical-like cyclone with a deep warm core, but the PGWATMS medicane weakens considerably (SLP, surface wind, and rainfall decrease). This difference can be explained by an increase in water vapour driven by the warmer ocean surface (favourable for cumulus convection). The warmer and drier atmosphere in PGWATMS tends to inhibit condensation (unfavourable for cumulus convection). The warmer ocean and warmer atmosphere have counteracting effects which leads to only a modest enhancement of the medicane by global warming. The novel approach in this study provides new insights into the different roles of warming of the ocean and atmosphere in medicane development.


2019 ◽  
Vol 279 ◽  
pp. 03007
Author(s):  
Ján Hollý ◽  
Adela Palková

The issue of climate change is undeniably demonstrating its presence. Consequently, there is a rising need to be prepared for upcoming threats by any means possible. One of the precautions includes obtaining the information characterizing the expected impact of global warming. This will allow authorities and other stakeholders to act accordingly in time. The article presents the assessment of the extent of impact of energy-related construction solutions in dwelling type unit situated in Central Europe region under the 21st century climate conditions. The findings represent eventual demands of energy for cooling and heating and its prospective savings. This is conducted by consecutively and automatically changing the parameters in individual simulation runs. As a basis for simulations, regionally scaled weather data of three different climate areas are used. These data are based on the emission scenarios by IPCC and are reaching to the year 2100. The selection of assessed parameters and climate data application are briefly explained in the article. The results of simulations are evaluated and recommended solutions are stated in regard to the specific energy-related construction changes. The aim is to successfully mitigate and adapt to the climate change phenomenon.


2012 ◽  
Vol 88-89 ◽  
pp. 85-97 ◽  
Author(s):  
E. Ivits ◽  
M. Cherlet ◽  
G. Tóth ◽  
S. Sommer ◽  
W. Mehl ◽  
...  

Author(s):  
Shuiqing Yin ◽  
Deliang Chen

Weather generators (WGs) are stochastic models that can generate synthetic climate time series of unlimited length and having statistical properties similar to those of observed time series for a location or an area. WGs can infill missing data, extend the length of climate time series, and generate meteorological conditions for unobserved locations. Since the 1990s WGs have become an important spatial-temporal statistical downscaling methodology and have been playing an increasingly important role in climate-change impact assessment. Although the majority of the existing WGs have focused on simulation of precipitation for a single site, more and more WGs considering correlations among multiple sites, and multiple variables, including precipitation and nonprecipitation variables such as temperature, solar radiation, wind, humidity, and cloud cover have been developed for daily and sub-daily scales. Various parametric, semi-parametric and nonparametric WGs have shown the ability to represent the mean, variance, and autocorrelation characteristics of climate variables at different scales. Two main methodologies including change factor and conditional WGs on large-scale dynamical and thermal dynamical weather states have been developed for applications under a changing climate. However, rationality and validity of assumptions underlining both methodologies need to be carefully checked before they can be used to project future climate change at local scale. Further, simulation of extreme values by the existing WGs needs to be further improved. WGs assimilating multisource observations from ground observations, reanalysis, satellite remote sensing, and weather radar for the continuous simulation of two-dimensional climate fields based on the mixed physics-based and stochastic approaches deserve further efforts. An inter-comparison project on a large ensemble of WG methods may be helpful for the improvement of WGs. Due to the applied nature of WGs, their future development also requires inputs from decision-makers and other relevant stakeholders.


2021 ◽  
Vol 24 (1) ◽  
pp. 28-48
Author(s):  
Eleni Ioanna Koutsovili ◽  
Ourania Tzoraki ◽  
Nicolaos Theodossiou ◽  
Petros Gaganis

Abstract Frequency of flash floods and droughts in the Mediterranean climate zone is expected to rise in the coming years due to change of its climate. The assessment of the climate change impact at a basin scale is essential for developing mitigation and adaptation plans. This study analyses the variation of the hydrologic regime of a small Mediterranean river (the Kalloni river in Lesvos Island, Greece) by the examination of possible future climate change scenarios. The hydrologic response of the basin was simulated based on Hydrologic Modeling System developed by the Hydrologic Engineering Center (HEC-HMS). Weather Generator version 6 from the Long Ashton Research Station (LARS-WG 6.0) was utilized to forecast climate data from 2021 to 2080. These forecasted climate data were then assigned as weather inputs to HEC-HMS to downscale the climate predictions of five large-scale general circulation models (GCMs) for three possible emission scenarios (such as RCP 2.6, RCP 4.5, and RCP 8.5). The alteration of the Kalloni hydrologic regime is evaluated by comparing GCMs based estimates of future streamflow and evapotranspiration with business as usual (BaU) scenario. Variation was noted in seasonal and in annual scale forecasting of long-term average discharges, which show increasing trend in autumn and decreasing in summer and there is observed a general upward trend of actual evapotranspiration losses.


Sign in / Sign up

Export Citation Format

Share Document