Nanofluid Treatment in Existence of Magnetic Field Using Non-Darcy Model for Porous Media

In this chapter, the non-Darcy model is employed for porous media filled with nanofluid. Both natural and forced convection heat transfer can be analyzed with this model. The governing equations in forms of vorticity stream function are derived and then they are solved via control volume-based finite element method (CVFEM). The effect of Darcy number on nanofluid flow and heat transfer is examined.

2021 ◽  
Vol 39 (3) ◽  
pp. 876-884
Author(s):  
Jino Lawrence ◽  
Vanav Kumar Alagarsamy

The involvement of non-linear convection effects in a natural convective fluid flow and heat transfer along with the effects of magnetic field in a porous cavity is studied numerically. Cu-water filled cavity of higher temperature at the left wall and lower temperature at the right wall. The governing equations are organized to achieve the required flow by using two-dimensional equations of energy, continuity and momentum. Vorticity-stream function based dimensionless equations are solved using the finite difference techniques. The results are discussed for various dimensionless parameters such as the Darcy number, non-linear convection parameter, Hartmann number, Rayleigh number and solid volume fraction of the nanoparticles. An augment in streamline velocity and convection heat transfer are observed by increasing the Rayleigh number, non-linear convection parameter and Darcy number. The non-linear convection parameter has a lesser effect on the lower Rayleigh numbers. Diminished streamline intensity and reduction in convection heat transfer are noted for an increase in the strength of the applied magnetic field irrespective of the non-linear convection parameter.


In this chapter, the effect of electric field on forced convection heat transfer of nanofluid is presented. The governing equations are derived and presented in vorticity stream function formulation. Control volume-based finite element method (CVFEM) is employed to solve the final equations. Results indicate that the flow style depends on supplied voltage, and this effect is more sensible for low Reynolds number.


In this chapter, the effect of magnetic field dependent (MFD) viscosity on free convection heat transfer of nanofluid in an enclosure is investigated. A single-phase nanofluid model is utilized considering Brownian motion. The control volume-based finite element method is applied to simulate this problem. The effects of viscosity parameter, Hartmann number, and Rayleigh number on hydrothermal behavior have been examined.


2005 ◽  
Vol 73 (1) ◽  
pp. 54-59 ◽  
Author(s):  
Rebhi A. Damseh

The magnetohydrodynamics-mixed convection heat transfer problem from a vertical surface embedded in a porous media is studied. The effects of transverse magnetic field and radiation heat transfer are examined. Both cases of the mixed convection heat transfer problem, namely: the buoyancy aiding flow and the buoyancy opposing flow are investigated. It is found that three dimensionless groups can describe the problem under consideration, the mixed convection parameter ζ, the radiation-conduction parameter Rd, and the magnetic field number Hax2∕Rex. Different velocity profiles, temperature profiles, and the local Nusselt number variations are also drawn.


Author(s):  
Nihad Dukhan

Contemporary porous media that are used in cooling designs include metal and graphite foam. These materials are excellent heat transfer cores due to their large surface area density and the relatively high conductivity of the solid phase. Engineering models for convection heat transfer in such media are needed for thermal system design. When the cooling fluid has a low conductivity, e.g., air, its conduction can be set to zero. Engineering analysis for the fully-developed convection heat transfer inside a confined cylindrical isotropic porous media subjected to constant heat flux is presented. The analysis considers the Darcy flow model and high Pe´clet number. The non-local-thermal equilibrium equations are significantly simplified and solved. The solid and fluid temperatures decay in what looks like an exponential fashion as the distance from the heated wall increases. The effects of the Biot number and the Darcy number are investigated. The results are in qualitative agreement with more complex analytical and numerical results in the literature. The solution is of utility for initial heat transfer designs, and for more complex numerical modeling of the heat transfer phenomenon in porous media.


1970 ◽  
Vol 6 (1) ◽  
Author(s):  
Ahmed F. Alfahaid, R.Y. Sakr ◽  
M. I. Ahmed

Natural convection in horizontal annular porous media has become a subject receiving increasing attention due to its practical importance in the problem of insulators, such as ducting system in high temperature gas-cooled reactors, heating systems, thermal energy storage systems, under ground cable systems, etc. This paper presents a numerical study for steady state thermal convection in a fully saturated porous media bounded by two horizontal concentric cylinders, the cylinders are impermeable to fluid motion and maintained at different, uniform temperatures.  The solution scheme is based on two-dimensional model, which is governed by Darcy-Oberbeck-Boussinesq equations. The finite element method using Galerkin technique is developed and employed to solve the present problem. A numerical simulation is carried out to examine the parametric effects of Rayleigh number and radius ratio on the role played by natural convection heat transfer in the porous annuli. The numerical results obtained from the present model were compared with the available published results and good agreement is observed. The average Nusselt number at the heating surface of the inner cylinder is correlated to Rayleigh number and radius ratio.Keywords: Natural convection, numerical investigation, saturated porous media, finite element method, concentric horizontal annuli.


Author(s):  
Zhenyu Liu ◽  
Huiru Wang ◽  
Yuanpeng Yao ◽  
Huiying Wu

A great number of studies have been carried out to provide the macroscopic descriptions of the overall viscous resistance and heat transfer in the porous media. The new numerical study is necessary to be performed to obtain an understanding of the characteristics at macro/pore scale. The multiscale modeling of the flow and heat transfer in the porous media remains difficult with standard one mesh methods due to the heterogeneity in different scales. In this study, the convection heat transfer is simulated using a macro-scale model including the thermal non-equilibrium assumption. The results, which are validated by the predictions in open literature, show that the convection heat transfer in the porous media can be predicted numerically using a thermal non-equilibrium model. To understand the heat transfer characteristics between the fluid and the solid in porous media, a pore-scale model is developed to obtain the macroscopic properties, especially the convective heat transfer coefficient between two phases. A single cell is simulated to represent a small region in a much larger porous medium. The complex porous structure is reconstructed based on the review of the previous studies and the computational fluid dynamic technique is used to predict flow and heat transfer process. The present work can be extended to study the phase change phenomena in complex structured media, which is normally applied in the latent heat thermal energy storage.


Sign in / Sign up

Export Citation Format

Share Document