Applications of Nanofluid Transportation and Heat Transfer Simulation - Advances in Chemical and Materials Engineering
Latest Publications


TOTAL DOCUMENTS

10
(FIVE YEARS 0)

H-INDEX

0
(FIVE YEARS 0)

Published By IGI Global

9781522575955, 9781522575962

In this chapter, the non-Darcy model is employed for porous media filled with nanofluid. Both natural and forced convection heat transfer can be analyzed with this model. The governing equations in forms of vorticity stream function are derived and then they are solved via control volume-based finite element method (CVFEM). The effect of Darcy number on nanofluid flow and heat transfer is examined.


The shape of nanoparticles can change the thermal conductivity of nanofluid. So, the effect of shape factor on nanofluid flow and heat transfer has been reported in this chapter. Governing equations are presented in vorticity stream function formulation. Control volume-based finite element method (CVFEM) is utilized to obtain the results. Results indicate that platelet shape has the highest rate of heat transfer.


Magnetic nanofluid (Ferrofluid) is a magnetic colloidal suspension consisting of base liquid and magnetic nanoparticles with a size range of 5–15 nm in diameter coated with a surfactant layer. The effect of magnetic field on fluids is worth investigating due to its numerous applications in a wide range of fields. The study of interaction of the magnetic field or the electromagnetic field with fluids have been documented (e.g., among nuclear fusion, chemical engineering, medicine, and transformer cooling). The goal of nanofluid is to achieve the highest possible thermal properties at the smallest possible concentrations by uniform dispersion and stable suspension of nanoparticles in host fluids. In this chapter, the influence of external magnetic field on ferrofluid flow and heat transfer is investigated. Both effects of Ferrohydrodynamic (FHD) and Magnetohydrodynamic (MHD) have been taken in to account. So, the effects of Lorentz and Kelvin forces on hydrothermal behavior are examined.


In this chapter, the effect of electric field on forced convection heat transfer of nanofluid is presented. The governing equations are derived and presented in vorticity stream function formulation. Control volume-based finite element method (CVFEM) is employed to solve the final equations. Results indicate that the flow style depends on supplied voltage, and this effect is more sensible for low Reynolds number.


The study of convective heat transfer in fluid-saturated porous media has many important applications in technology geothermal energy recovery such as oil recovery, food processing, fiber and granular insulation, porous burner and heater, combustion of low-calorific fuels to diesel engines, and design of packed bed reactors. Also, the flow in porous tubes or channels has been under considerable attention in recent years because of its various applications in biomedical engineering, transpiration cooling boundary layer control, and gaseous diffusion. Nanofluids are produced by dispersing the nanometer-scale solid particles into base liquids with low thermal conductivity such as water, ethylene glycol (EG), and oils. In this chapter, nanofluid hydrothermal behavior in porous media has been investigated.


Latent heat thermal energy storage systems (LHTESS), which work based on energy storage and retrieval during solid-liquid phase change, is used to establish balance between energy supply and demand. LHTESS stores and retrieves thermal energy during solid-liquid phase change, while in SHTESS phase change doesn't occur during the energy storage and retrieval process. LHTESS has a lot of advantages in comparison to SHTESS. The most important one is storing a large amount of energy during phase change process, which makes the energy storage density in LHTESS much higher than SHTESS. Because of this property, LHTESS have a wide application in different cases, such as solar air dryer, HVAC systems, electronic chip cooling, and engine heat recovery. The main restriction for these systems is thermal conductivity weakness of common PCMs. In this chapter, the method of adding nanoparticles to pure PCM and making nano-enhanced phase change material (NEPCM) and using fin with suitable array are presented to accelerate solidification process. The numerical approach which is used in this chapter is standard Galerkin finite element method.


In this chapter, the effect of magnetic field dependent (MFD) viscosity on free convection heat transfer of nanofluid in an enclosure is investigated. A single-phase nanofluid model is utilized considering Brownian motion. The control volume-based finite element method is applied to simulate this problem. The effects of viscosity parameter, Hartmann number, and Rayleigh number on hydrothermal behavior have been examined.


Natural convection under the influence of a magnetic field has great importance in many industrial applications such as crystal growth, metal casting, and liquid metal cooling blankets for fusion reactors. The existence of a magnetic field has a noticeable effect on heat transfer reduction under natural convection while in many engineering applications increasing heat transfer from solid surfaces is a goal. At this circumstance, the use of nanofluids with higher thermal conductivity can be considered as a promising solution. In this chapter, the influence of Lorentz forces on hydrothermal behavior is studied.


Nanofluids are fluids containing the solid nanometer-sized particle dispersion. Two main methods are introduced in this chapter, namely single-phase and two-phase modeling. In first method, the combination of nanoparticle and base fluid is considered as a single-phase mixture with steady properties, and in the second method, the nanoparticle properties and behaviors are considered separately from the base fluid properties and behaviors. Moreover, nanofluid flow and heat transfer can be studied in the presence of thermal radiation, electric field, magnetic field, and porous media. In this chapter, a definition of nanofluid and its applications have been presented.


In this chapter, the effect of melting surface heat transfer on magnetohydrodynamic nanofluid free convection is analyzed by means of control volume-based finite element method (CVFEM). KKL model is taken into account to obtain viscosity and thermal conductivity of CuO-water nanofluid. The roles of melting parameter, nanofluid volume fraction, Hartmann and Rayleigh numbers are illustrated.


Sign in / Sign up

Export Citation Format

Share Document