A Perceptual Computing Based Gesture Controlled Quadcopter for Visual Tracking and Transportation

2019 ◽  
pp. 131-141
Author(s):  
Kumar Yelamarthi ◽  
Raghudeep Kannavara ◽  
Sanjay Boddhu

One of the fundamental challenges faced by an inexperienced user in portable unmanned aerial vehicle (UAV) such as quadcopters is flight control, often leading to crashes. Addressing this challenge, and leveraging upon the technological advancement in perceptual computing and computer vision, this research presents a modular system that allows for hand gesture based flight control of UAV, alongside a transport mechanism for portable objects. In addition to ascertain smooth flight control by avoiding obstacles in navigation path, real-time video feedback is relayed from the UAV to user, thus allowing him/her to take appropriate actions. This paper presents the design implementation by discussing the various sub-systems involved, inter system communication, and field tests to ascertain operation. As presented from testing results, the proposed system provides efficient communication between the subsystems for smooth flight control, while allowing for safe transport of portable objects.

Author(s):  
Kumar Yelamarthi ◽  
Raghudeep Kannavara ◽  
Sanjay Boddhu

One of the fundamental challenges faced by an inexperienced user in portable unmanned aerial vehicle (UAV) such as quadcopters is flight control, often leading to crashes. Addressing this challenge, and leveraging upon the technological advancement in perceptual computing and computer vision, this research presents a modular system that allows for hand gesture based flight control of UAV, alongside a transport mechanism for portable objects. In addition to ascertain smooth flight control by avoiding obstacles in navigation path, real-time video feedback is relayed from the UAV to user, thus allowing him/her to take appropriate actions. This paper presents the design implementation by discussing the various sub-systems involved, inter system communication, and field tests to ascertain operation. As presented from testing results, the proposed system provides efficient communication between the subsystems for smooth flight control, while allowing for safe transport of portable objects.


2021 ◽  
Vol 6 (2) ◽  
pp. 2044-2051
Author(s):  
Danial Sufiyan ◽  
Luke Soe Thura Win ◽  
Shane Kyi Hla Win ◽  
Gim Song Soh ◽  
Shaohui Foong

2015 ◽  
Author(s):  
Χρήστος Παπαχρήστος

This Dissertation addresses the design and development of small-scale UnmannedAerial Vehicles of the TiltRotor class, alongside their autonomous navigation requirements,including the fully-onboard state estimation, high-efficiency flight control,and advanced environment perception.Starting with an educated Computer Assisted Design-based methodology, a mechanicallyrobust, customizable, and repeatable vehicle build is achieved, relyingon high-quality Commercially Available Off-The Shelf equipment –sensors, actuators,structural components–, optionally aided by Rapid Prototyping technology.A high-fidelity modeling process is conducted, incorporating the rigid-body dynamics,aerodynamics, and the actuation subsystem dynamics, exploiting fistprincipleapproaches, Frequency Domain System Identification, as well as computationaltools. Considering the most significant phenomena captured in thisprocess, a more simplified PieceWise Affine system model representation is developedfor control purposes –which however incorporates complexities such as flight(state) envelope-associated aerodynamics, the differentiated effects of the directthrust-vectoring (rotor-tilting) and the underactuated (body-pitching) actuationauthorities, as well as their interferences through rigid-body coupling–.Despite the switching system dynamics, and –as thoroughly elaborated– theirreliance on constrained manipulated variables, to maintain a meaningful controlorientedrepresentation, the real-time optimal flight control of the TiltRotor vehicleis achieved relying on a Receding Horizon methodology, and more specifically anexplicit Model Predictive Control framework. This synthesis guarantees globalstability of the switching dynamics, observance of state and control input constraints,response optimality, as well as efficient execution on low computationa power modules due to its explicit representation. Accompanied by a proper Lowand-Mid-LevelControl synthesis, this scheme provides exceptional flight handlingqualities to the aerial vehicle, particularly in the areas of aggressive maneuveringand high-accuracy trajectory tracking.Moreover, the utility of TiltRotor vehicles in the field of aerial robotic forcefulphysical interaction is researched. Exploiting the previously noted properties ofthe PieceWise Affine systems Model Predictive Control strategy, the guaranteedstabilityFree-Flight to Physical-Interaction switching of the system is achieved,effectively bringing the aerial vehicle into safe, controlled physical contact withthe surface of structures in the environment.More importantly, employing rotor-tilting actuation –collectively and differentially–significant forces and moments can be applied onto the environment, while via thestandard underactuated authority the vehicle maintains a stable hovering-attitudepose, where the system’s disturbance rejection properties are maximized. Overall,the complete control framework enables coming into physical contact with environmentstructures, and manipulating the enacted forces and moments. Exploitingsuch capabilities the TiltRotor is used to achieve the execution of physicallydemandingwork-tasks (surface-grinding) and the manipulation of realisticallysizedobjects (of twice its own mass) via pushing.Additionally, the fully-onboard state estimation problem is tackled by implementingdata fusion of measurements derived from inertial sensors and customdevelopedcomputer vision algorithms which employ Homography and OpticalFlow calculation. With a proper sensorial setup, high-rate and robust ego-motionestimation is achieved, enabling the controlled aggressive maneuverability withoutreliance on external equipment, such as motion capture systems or GlobalPositioning System coverage.Finally, a hardware/software framework is developed which adds advanced autonomousperception and navigation capabilities to small-scale unmanned vehicles,employing stereo vision and integrating state-of-the art solutions for incrementalenvironment building, dense reconstruction and mapping, and point-to-pointcollision-free navigation. Within this framework, algorithms which enable the detection,segmentation, (re-)localization, and mobile tracking –and avoidance– of adynamic subject within the aerial vehicle’s operating space are developed, substantiallyincreasing the operational potential of autonomous aircraft within dynamicenvironments and/or dynamically evolving missions.


Author(s):  
D. M. Zhuravskiy ◽  
U. V. Prokhorova ◽  
B. V. Ivanov ◽  
A. S. Yanjura ◽  
N. M. Kuprikov ◽  
...  

The article discusses the results of applying in Antarctica an original technique for estimating albedo from photogrammetric data and exposure parameters by an unmanned aerial vehicle (UAV). The complexities of the photogrammetric observations under extreme conditions are considered. Conclusions are drawn on ways to improve the recording equipment and the direction of improving the technique for calculating albedo values based on photogrammetric materials and metadata.


2011 ◽  
Vol 2011 (0) ◽  
pp. _1A2-O11_1-_1A2-O11_4
Author(s):  
Kenta Go ◽  
Atsushi KONNO ◽  
Takaaki MATSUMOTO ◽  
Atsushi OOSEDO ◽  
Kouji MASUKO ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xueqiang Shen ◽  
Jiwei Fan ◽  
Haiqing Wang

In order to control the position and attitude of unmanned aerial vehicle (UAV) better in different environments, this study proposed a hybrid control system with backstepping and PID method for eight-rotor UAV in different flight conditions and designed a switching method based on altitude and attitude angle of UAV. The switched process of hybrid controller while UAV taking off, landing, and disturbance under the gust is verified in MATLAB/Simulink. A set of appropriate controllers always matches to the flight of UAV in different circumstances, which can speed up the system response and reduce the steady-state error to improve stability. The simulation results show that the hybrid control system can suppress the drift efficiently under gusts, enhance the dynamic performance and stability of the system, and meet the position and attitude of flight control requirements.


Sign in / Sign up

Export Citation Format

Share Document