Climate Change in the Built Environment

Author(s):  
Jeremy T. Gibberd

Despite a growing awareness of climate change, there is little evidence that this is being addressed in cities and built environments. Events such as flooding in Houston, USA; landslides in Free Town, Sierra Leone; and water shortages in La Paz, Bolivia and Cape Town in South Africa demonstrate that it is increasingly important that climate change is understood and addressed in built environments to ensure that they become more resilient. This chapter introduces climate change and outlines the implications of this for built environments. It describes measures that can be incorporated into built environments to enable them to adapt to projected climate changes. Understanding climate change and preparing for this by developing built environments that are more resilient will be an increasingly valuable and important skill. Reading this chapter will support the development and refinement of skills and knowledge in this area and it is an essential reference for built environment students and practitioners.

Author(s):  
Jeremy T. Gibberd

Despite a growing awareness of climate change, there is little evidence that this is being addressed in cities and built environments. Events such as flooding in Houston, USA; landslides in Free Town, Sierra Leone; and water shortages in La Paz, Bolivia and Cape Town in South Africa demonstrate that it is increasingly important that climate change is understood and addressed in built environments to ensure that they become more resilient. This chapter introduces climate change and outlines the implications of this for built environments. It describes measures that can be incorporated into built environments to enable them to adapt to projected climate changes. Understanding climate change and preparing for this by developing built environments that are more resilient will be an increasingly valuable and important skill. Reading this chapter will support the development and refinement of skills and knowledge in this area and it is an essential reference for built environment students and practitioners.


2021 ◽  
Author(s):  
Maibritt Pedersen Zari ◽  
Katarina Hecht

Built environment professionals must solve urgent and complex problems related to mitigating and adapting to climate change and biodiversity loss. Cities require redesign and retrofit so they can become complex systems that create rather than diminish ecological and societal health. One way to do this is to strategically design buildings and cities to generate and provide ecosystem services. This is an aspect of biomimicry, where whole ecosystems and their functions are emulated, in order to positively shift the ecological performance of buildings and urban settings. A small number of methodologies and frameworks for ecosystem services design have been proposed, but their use is not wide spread. A key barrier is the lack of translational work between ecology concepts and practical examples of ecosystem services design for a built environment context. In response, this paper presents research underpinning the creation of a qualitative relational diagram in an online interactive format that relates ecosystem services concepts to design strategies, concepts, technologies, and case studies in a format for use by built environment professionals. The paper concludes that buildings and whole cities should be expected to become active contributors to socio-ecological systems because, as the diagram shows, many strategies and technologies to enable this already exist.


Biomimetics ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 18
Author(s):  
Maibritt Pedersen Zari ◽  
Katharina Hecht

Built environment professionals must solve urgent and complex problems related to mitigating and adapting to climate change and biodiversity loss. Cities require redesign and retrofit so they can become complex systems that create rather than diminish ecological and societal health. One way to do this is to strategically design buildings and cities to generate and provide ecosystem services. This is an aspect of biomimicry, where whole ecosystems and their functions are emulated, in order to positively shift the ecological performance of buildings and urban settings. A small number of methodologies and frameworks for ecosystem services design have been proposed, but their use is not wide spread. A key barrier is the lack of translational work between ecology concepts and practical examples of ecosystem services design for a built environment context. In response, this paper presents research underpinning the creation of a qualitative relational diagram in an online interactive format that relates ecosystem services concepts to design strategies, concepts, technologies, and case studies in a format for use by built environment professionals. The paper concludes that buildings and whole cities should be expected to become active contributors to socio-ecological systems because, as the diagram shows, many strategies and technologies to enable this already exist.


1997 ◽  
Vol 21 (1) ◽  
pp. 113-136 ◽  
Author(s):  
R.E. Schulze

South Africa is already hydrologically vulnerable and this is likely to be exacerbated by both nonpermanent ENSO-related as well as more permanently greenhouse-gas forced climate changes. Climate change effects are explained by way of the hydrological equation. This serves as a backdrop to a brief review, in a hydrological context, of projected perturbations to temperature, rainfall and potential evaporation, over southern Africa. Methodologies for simulating hydro logical responses to climate change are assessed. These include more direct GCM-derived output, with some emphasis on recent advances in climatic downscaling, and the application of appro priate hydrological models for use in impact studies. Scale problems of importance to hydrologists are highlighted. Directions to which climate change-related hydrological research efforts should be expended in South Africa are summarized, before two case study simulations, one a general sensitivity study of hydrological responses to changes in rainfall over southern Africa, the other a more specific hydrological response study to the El Niño of the 1982-83 season, are presented. The article concludes with a discussion on whether or not water resources practitioners in South Africa should respond to climate change.


Author(s):  
Godwell Nhamo ◽  
Adelaide O. Agyepong

The challenges associated with climate change in local governments are growing daily. One such challenge is water security, an aspect that draws us to the subject matter of climate change adaptation. This article discusses findings about institutional complexities surrounding Day Zero, a concept associated with water taps running dry because of drought conditions as aggravated by climate change in the city of Cape Town, South Africa. The thrust on institutional complexities is deliberate, as this affects how crisis situations like Day Zero were handled. The data were generated mainly from the actor–actant–network theory, events study as well as document and discourse analysis methods. The actor–actant–network theory is used widely to trace how actors (humans) and actants (non-human phenomena) interact in space and time through their networks, following narratives like Day Zero, and act on climate-related matters. The analysis applied elements of grounded theory, resulting in categories and themes emerging for discussion. The article found that narratives surrounding Day Zero were embedded in both political and administrative dilemmas and red tape. Despite these challenges, the article concludes that Day Zero remains one of the landmark learning points for climate change adaptation and water security in Cape Town, South Africa, and in other cities across the world. The article recommends that Day Zero experiences continue to be embraced positively and documented further to enhance local government climate adaptation for water security currently and into the future as well.


2021 ◽  
Author(s):  
Maibritt Pedersen Zari

Built environment professionals must solve urgent and complex problems related to mitigating and adapting to climate change and biodiversity loss. Cities require redesign and retrofit so they can become complex systems that create rather than diminish ecological and societal health. One way to do this is to strategically design buildings and cities to generate and provide ecosystem services. This is an aspect of biomimicry, where whole ecosystems and their functions are emulated, in order to positively shift the ecological performance of buildings and urban settings. A small number of methodologies and frameworks for ecosystem services design have been proposed, but their use is not wide spread. A key barrier is the lack of translational work between ecology concepts and practical examples of ecosystem services design for a built environment context. In response, this paper presents research underpinning the creation of a qualitative relational diagram in an online interactive format that relates ecosystem services concepts to design strategies, concepts, technologies, and case studies in a format for use by built environment professionals. The paper concludes that buildings and whole cities should be expected to become active contributors to socio-ecological systems because, as the diagram shows, many strategies and technologies to enable this already exist.


2021 ◽  
Author(s):  
◽  
Maibritt Pedersen Zari

<p>Humans will need to mitigate the causes of, and adapt to climate change and the loss of biodiversity, as the now inevitable impacts of these changes become more apparent and demand urgent responses. The built environment cannot solve these issues alone. Because it contributes significantly to these problems however, and because it is the main site of cultural and economic activities, it could potentially make a contribution to addressing these problems. Typical built environment focused responses to climate change and biodiversity issues are inadequate given the urgency and scale of the predicted impacts. They tend not to take advantage of the interconnected nature of the causes and effects of climate change and biodiversity loss. Aiming for ‘neutral’ environmental impact buildings in terms of energy, carbon, waste or water sets worthwhile and difficult targets. It is becoming clear however, that built environments may need to go beyond having little negative environmental impact in the future, to having positive environmental benefits. Regenerative design could be useful in this regard because it works to mitigate the causes of climate change and ecosystem degradation (and therefore biodiversity loss). Regenerative design ideally increases the health of ecosystems and resilience to change by utilising the mutually reinforcing aspects of mitigation, adaptation and restoration strategies. The goal of the research is to identify whether regenerative design is possible in urban settings, and to determine where key leverage points for system change may be within the built environment. Regenerative design is in need of further definition and exploration, and lacks quantitative evidence of its potential either by monitoring of built examples, or basic theoretical measurements. Regenerative design literature suggests that mimicking organisms or ecosystems could be an important part of such an approach to design. This is often termed ‘biomimicry’. The concept and practice of biomimicry is also in need of critical investigation for its potential contribution to increased sustainability outcomes. Different kinds of biomimicry exist in terms of type, underlying motivation, and environmental performance outcomes. The thesis examines current understandings of ecological systems in relation to the built environment, and aims to define an ecosystem biomimetic theory for the practical application of regenerative design in urban environments. In order to do this, ecosystem services are examined and potential key ecosystem services that are applicable to a built environment context are identified. The research primarily investigates one area of human knowledge (ecology and biology) for its transferable applicability to another (the urban built environment). Finally, the research determines how such theory could be practically applied to urban and architectural design and tests this through conducting a case study of an existing urban environment. It is posited that the incorporation of an understanding of the living world into architectural and urban design may be a step towards the creation of a built environment that is more sustainable or potentially regenerative, and one where the potential for restoration of natural carbon cycles is increased. Practical examples of this are given in chapter five. The outcome of such an endeavour depends on the wider context that the built environment is situated in, including the time left for action to be taken before the impacts of climate change and biodiversity loss become extreme, and the inability of the dominant global financial system to allow rapid and widespread action to occur that effectively addresses these issues.</p>


Author(s):  
Martin de Wit ◽  
Jonty Rawlins ◽  
Belynda Petrie

Estimating the economic risks of climate shocks and climate stressors on spatially heterogeneous cities over time remain highly challenging. The purpose of this paper is to present a practical methodology to assess the economic risks of climate change in developing cities to inform spatially sensitive municipal climate response strategies. Building on a capital-based framework (CBF), spatially disaggregated baseline and future scenario scores for economic wealth and its exposure to climate change are developed for six different classes of capital and across 77 major suburbs in Cape Town, South Africa. Capital-at-risk was calculated by combining relative exposure and capital scores across different scenarios and with population impacted plotted against the major suburbs and the city’s 8 main planning districts. The economic risk assessment presented here provides a generic approach to assist investment planning and the implementation of adaptation options through an enhanced understanding of relative levels of capital endowment vis-à-vis relative levels of exposure to climate-related hazards over time. An informed climate response strategy in spatially heterogeneous cities need to include spatially sensitive estimates on capital-at-risk and populations disproportionally impacted by climate exposure over time. The economic risk assessment approach presented here helps in advancing to such a goal.


2021 ◽  
Author(s):  
Maibritt Pedersen Zari ◽  
Katarina Hecht

Built environment professionals must solve urgent and complex problems related to mitigating and adapting to climate change and biodiversity loss. Cities require redesign and retrofit so they can become complex systems that create rather than diminish ecological and societal health. One way to do this is to strategically design buildings and cities to generate and provide ecosystem services. This is an aspect of biomimicry, where whole ecosystems and their functions are emulated, in order to positively shift the ecological performance of buildings and urban settings. A small number of methodologies and frameworks for ecosystem services design have been proposed, but their use is not wide spread. A key barrier is the lack of translational work between ecology concepts and practical examples of ecosystem services design for a built environment context. In response, this paper presents research underpinning the creation of a qualitative relational diagram in an online interactive format that relates ecosystem services concepts to design strategies, concepts, technologies, and case studies in a format for use by built environment professionals. The paper concludes that buildings and whole cities should be expected to become active contributors to socio-ecological systems because, as the diagram shows, many strategies and technologies to enable this already exist.


Sign in / Sign up

Export Citation Format

Share Document