Researches of Technology Electrohydraulic Effect

Author(s):  
Jorge Vinna Sabrejos ◽  
Аlexey Nikolaevich Vasilyev ◽  
Alexander Anatolievich Belov ◽  
Viktor Nikolaevich Toporkov ◽  
Andrey Anatolievich Musenko

The purpose of the chapter is to study the technology and technical means of electrohydraulic action on water. The authors justify the relevance of the research. The design of the original negative electrode tip is being developed to increase the density of the electromagnetic field and reduce power loss. The design parameters of the electrohydraulic installation are shown. Modeling of factors influencing the process of electrohydraulic treatment of water according to the Plackett-Berman plan and the random balance method is carried out; significant and insignificant factors are identified. The operation modes of the electrohydraulic installation are determined and optimized experimentally. The substantiation of the economic feasibility of using electrohydraulic water treatment technology in farms is being conducted. The prospects and scope of electrohydraulic technology are determined.

2018 ◽  
Vol 6 (3) ◽  
Author(s):  
Arie Herlambang

Clean water to poor communities who live in crowded municipal area is stillexpensive and a luxury. This condition is evidenced by the number of people whouse ground water for their daily water, because water taps still seems expensivefor them. Diarrheal disease is still relatively high for Indonesia, where nearly 16thousand people suffer from diarrhea due to poor sanitation. To help the poor inthe city, there are several alternative technologies that can be applied to publicaccess to clean water and adequate low-cost, including ground water treatmenttechnology with a filter system equipped with an ultraviolet sterilizer, or ozonegenerators, or using ultrafiltration, if possible can also use the reverse osmosismembrane that for fresh water. Arsinum is the best alternative should be chosenfor fulfilled potable water in slump area.Keywords : Sanitation, water treatment technology, portable water, low-cost, slump area


1998 ◽  
Vol 37 (9) ◽  
pp. 105-112 ◽  
Author(s):  
Ana María Ingallinella ◽  
Luis María Stecca ◽  
Martin Wegelin

This paper presents the methodology used for the rehabilitation of the pretreatment stage in a water treatment plant for a village located in Bolivia which has 3500 inhabitants. The treatment plant was initially composed by horizontal-flow roughing filters and slow sand filters, but due to the high contents of colloidal turbidity of the providing source, it did not work properly. A plan of rehabilitation was made which comprised laboratory tests, pilot tests and proposal of modifications based on the results of previous stages. The laboratory tests were made in order to find the optimum conditions to coagulate the raw water. It was found that horizontal-flow roughing filters must be turned into up-flow roughing filters, so a pilot plant was built and was operated for three months in order to find suitable design parameters. The results obtained obtained during the operation of the pilot plant and the proposal of modifications are presented. The results of operation of the final plant, which are also reported, demonstrated the advantages of the up-flow roughing filtration as a pretreatment stage when it is necessary to add chemical products in small treatment plants.


2021 ◽  
Vol 831 (1) ◽  
pp. 012028
Author(s):  
Zhan Liu ◽  
Meifang Yan ◽  
Yuhua Gao ◽  
Haihua Li ◽  
Na Li ◽  
...  

2021 ◽  
Author(s):  
Steinar Asdahl ◽  
Johann Jansen van Rensburg ◽  
Martin Einarson Waag ◽  
Rune Glenna Nilssen

Abstract Traditionally, produced water from production separators is handled by multiple steps and different technologies in order to meet the required quality for either discharge or reinjection of the water. The development of the latest Compact Flotation Unit (CFU) technology has unlocked the potential for savings on cost, complexity, footprint and weight for the produced water treatment system. The developed CFU technology has proven applicable through field testing as a single treatment technology for reducing Oil-in-Water (OiW) content directly from tie-in at separator and still meet stringent requirements for outlet OiW quality. Field tests were conducted with inlet OiW concentration ranging from 200-2000 ppm, achieving results in the range 2.5 to 21 ppm only with a two-stage latest generation CFU. Compared to a traditional produced water system setup consisting of de-oiling hydrocyclones and a horizontal degassing vessel, the savings in footprint and operational weight is estimated to 54 % and 53 % respectively utilizing a two-stage CFU for a system with a design capacity of 76.000 BWPD. Furthermore, the development of the latest generation CFU technology has enabled the retrofit concept, incorporating the developed CFU internals into existing gravity separation based produced water vessels, converting them to more efficient flotation vessels with increased capacity. For brownfield and debottlenecking applications, operators are challenged by increasing water cut from maturing wells, and as a result exceeding the facilities design capacity for produced water treatment. This challenge is often further reinforced by increasingly stricter environmental legislation for OiW content for discharge or re-injection. The retrofit concept will offer a highly cost-, footprint- and weight-efficient solutions to these challenges utilizing existing vessels. Benefits of the retrofit concept: Bring proven and unique performance of the technology to other produced water separation vessels helping the operators improve the separation efficiency and increase throughput while meeting discharge requirementsShort execution time compared to installation of new process equipmentLow cost compared to installation of new process equipmentUtilization of existing equipment saves valuable footprint.


2017 ◽  
Vol 599-600 ◽  
pp. 1524-1551 ◽  
Author(s):  
Heather O'Neal Tugaoen ◽  
Sergi Garcia-Segura ◽  
Kiril Hristovski ◽  
Paul Westerhoff

Sign in / Sign up

Export Citation Format

Share Document