Methods and Applications for Segmenting 3D Medical Image Data

2011 ◽  
pp. 1144-1161
Author(s):  
Hong Shen

In this chapter, we will give an intuitive introduction to the general problem of 3D medical image segmentation. We will give an overview of the popular and relevant methods that may be applicable, with a discussion about their advantages and limits. Specifically, we will discuss the issue of incorporating prior knowledge into the segmentation of anatomic structures and describe in detail the concept and issues of knowledge-based segmentation. Typical sample applications will accompany the discussions throughout this chapter. We hope this will help an application developer to improve insights in the understanding and application of various computer vision approaches to solve real-world problems of medical image segmentation.

Author(s):  
Hong Shen

In this chapter, we will give an intuitive introduction to the general problem of 3D medical image segmentation. We will give an overview of the popular and relevant methods that may be applicable, with a discussion about their advantages and limits. Specifically, we will discuss the issue of incorporating prior knowledge into the segmentation of anatomic structures and describe in detail the concept and issues of knowledge-based segmentation. Typical sample applications will accompany the discussions throughout this chapter. We hope this will help an application developer to improve insights in the understanding and application of various computer vision approaches to solve real-world problems of medical image segmentation.


Author(s):  
Hong Shen

In this chapter, we will give an intuitive introduction to the general problem of 3D medical image segmentation. We will give an overview of the popular and relevant methods that may be applicable, with a discussion about their advantages and limits. Specifically, we will discuss the issue of incorporating prior knowledge into the segmentation of anatomic structures and describe in detail the concept and issues of knowledge-based segmentation. Typical sample applications will accompany the discussions throughout this chapter. We hope this will help an application developer to improve insights in the understanding and application of various computer vision approaches to solve real-world problems of medical image segmentation.


Author(s):  
Lars J. Isaksson ◽  
Paul Summers ◽  
Sara Raimondi ◽  
Sara Gandini ◽  
Abhir Bhalerao ◽  
...  

Abstract Researchers address the generalization problem of deep image processing networks mainly through extensive use of data augmentation techniques such as random flips, rotations, and deformations. A data augmentation technique called mixup, which constructs virtual training samples from convex combinations of inputs, was recently proposed for deep classification networks. The algorithm contributed to increased performance on classification in a variety of datasets, but so far has not been evaluated for image segmentation tasks. In this paper, we tested whether the mixup algorithm can improve the generalization performance of deep segmentation networks for medical image data. We trained a standard U-net architecture to segment the prostate in 100 T2-weighted 3D magnetic resonance images from prostate cancer patients, and compared the results with and without mixup in terms of Dice similarity coefficient and mean surface distance from a reference segmentation made by an experienced radiologist. Our results suggest that mixup offers a statistically significant boost in performance compared to non-mixup training, leading to up to 1.9% increase in Dice and a 10.9% decrease in surface distance. The mixup algorithm may thus offer an important aid for medical image segmentation applications, which are typically limited by severe data scarcity.


Author(s):  
Ramgopal Kashyap

In the medical image resolution, automatic segmentation is a challenging task, and it's still an unsolved problem for most medical applications due to the wide variety connected with image modalities, encoding parameters, and organic variability. In this chapter, a review and critique of medical image segmentation using clustering, compression, histogram, edge detection, parametric, variational model. and level set-based methods is presented. Modes of segmentation like manual, semi-automatic, interactive, and automatic are also discussed. To present current challenges, aim and motivation for doing fast, interactive and correct segmentation, the medical image modalities X-ray, CT, MRI, and PET are discussed in this chapter.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 145 ◽  
Author(s):  
Zheng Lu ◽  
Dali Chen

Weakly supervised and semi-supervised semantic segmentation has been widely used in the field of computer vision. Since it does not require groundtruth or it only needs a small number of groundtruths for training. Recently, some works use pseudo groundtruths which are generated by a classified network to train the model, however, this method is not suitable for medical image segmentation. To tackle this challenging problem, we use the GrabCut method to generate the pseudo groundtruths in this paper, and then we train the network based on a modified U-net model with the generated pseudo groundtruths, finally we utilize a small amount of groundtruths to fine tune the model. Extensive experiments on the challenging RIM-ONE and DRISHTI-GS benchmarks strongly demonstrate the effectiveness of our algorithm. We obtain state-of-art results on RIM-ONE and DRISHTI-GS databases.


2013 ◽  
Vol 3 (4) ◽  
pp. 47-59 ◽  
Author(s):  
Kai Xiao ◽  
Jianli Li ◽  
Shuangjiu Xiao ◽  
Haibing Guan ◽  
Fang Fang ◽  
...  

Although fuzzy c-means (FCM) algorithm and some of its variants have been extensively widely used in unsupervised medical image segmentation applications in recent years, they more or less suffer from either noise sensitivity or loss of details, which always is a key point to medical image processing. This paper presents a novel FCM variation method that is suitable for medical image segmentation. The proposed method, typically by incorporating multi-resolution bilateral filter which is combined with wavelet thresholding, provides the following advantages: (1) it is less sensitive to both high- and low-frequency noise and removes spurious blobs and noisy spots, (2) it yields more homogeneous clustering regions, and (3) it preserves detail, thus significantly improving clustering performance. By the use of synthetic and multiple-feature magnetic resonance (MR) image data, the experimental results and quantitative analyses suggest that, compared to other fuzzy clustering algorithms, the proposed method further enhances the robustness to noisy images and capacity of detail preservation.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Chunhua Dong ◽  
Xiangyan Zeng ◽  
Lanfen Lin ◽  
Hongjie Hu ◽  
Xianhua Han ◽  
...  

Random walk (RW) method has been widely used to segment the organ in the volumetric medical image. However, it leads to a very large-scale graph due to a number of nodes equal to a voxel number and inaccurate segmentation because of the unavailability of appropriate initial seed point setting. In addition, the classical RW algorithm was designed for a user to mark a few pixels with an arbitrary number of labels, regardless of the intensity and shape information of the organ. Hence, we propose a prior knowledge-based Bayes random walk framework to segment the volumetric medical image in a slice-by-slice manner. Our strategy is to employ the previous segmented slice to obtain the shape and intensity knowledge of the target organ for the adjacent slice. According to the prior knowledge, the object/background seed points can be dynamically updated for the adjacent slice by combining the narrow band threshold (NBT) method and the organ model with a Gaussian process. Finally, a high-quality image segmentation result can be automatically achieved using Bayes RW algorithm. Comparing our method with conventional RW and state-of-the-art interactive segmentation methods, our results show an improvement in the accuracy for liver segmentation (p<0.001).


2021 ◽  
Vol 15 ◽  
Author(s):  
Liangliang Liu ◽  
Jing Zhang ◽  
Jin-xiang Wang ◽  
Shufeng Xiong ◽  
Hui Zhang

Convolutional neural networks (CNNs) have brought hope for the medical image auxiliary diagnosis. However, the shortfall of labeled medical image data is the bottleneck that limits the performance improvement of supervised CNN methods. In addition, annotating a large number of labeled medical image data is often expensive and time-consuming. In this study, we propose a co-optimization learning network (COL-Net) for Magnetic Resonance Imaging (MRI) segmentation of ischemic penumbra tissues. COL-Net base on the limited labeled samples and consists of an unsupervised reconstruction network (R), a supervised segmentation network (S), and a transfer block (T). The reconstruction network extracts the robust features from reconstructing pseudo unlabeled samples, which is the auxiliary branch of the segmentation network. The segmentation network is used to segment the target lesions under the limited labeled samples and the auxiliary of the reconstruction network. The transfer block is used to co-optimization the feature maps between the bottlenecks of the reconstruction network and segmentation network. We propose a mix loss function to optimize COL-Net. COL-Net is verified on the public ischemic penumbra segmentation challenge (SPES) with two dozen labeled samples. Results demonstrate that COL-Net has high predictive accuracy and generalization with the Dice coefficient of 0.79. The extended experiment also shows COL-Net outperforms most supervised segmentation methods. COL-Net is a meaningful attempt to alleviate the limited labeled sample problem in medical image segmentation.


Sign in / Sign up

Export Citation Format

Share Document