Game Playing Tactic as a Behavioral Biometric for Human Identification

Author(s):  
Roman V. Yampolskiy ◽  
Venu Govindaraju

This chapter expends behavior based intrusion detection approach to a new domain of game networks. Specifically, our research shows that a behavioral biometric signature can be generated based on the strategy used by an individual to play a game. We wrote software capable of automatically extracting behavioral profiles for each player in a game of poker. Once a behavioral signature is generated for a player, it is continuously compared against player’s current actions. Any significant deviations in behavior are reported to the game server administrator as potential security breaches. In this chapter, we report our experimental results with user verification and identification, as well as our approach to generation of synthetic poker data and potential spoofing approaches of the developed system. We also propose utilizing techniques developed for behavior based recognition of humans to the identification and verification of intelligent game bots. Our experimental results demonstrate feasibility of such methodology.

Data ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Ahmed Elmogy ◽  
Hamada Rizk ◽  
Amany M. Sarhan

In data mining, outlier detection is a major challenge as it has an important role in many applications such as medical data, image processing, fraud detection, intrusion detection, and so forth. An extensive variety of clustering based approaches have been developed to detect outliers. However they are by nature time consuming which restrict their utilization with real-time applications. Furthermore, outlier detection requests are handled one at a time, which means that each request is initiated individually with a particular set of parameters. In this paper, the first clustering based outlier detection framework, (On the Fly Clustering Based Outlier Detection (OFCOD)) is presented. OFCOD enables analysts to effectively find out outliers on time with request even within huge datasets. The proposed framework has been tested and evaluated using two real world datasets with different features and applications; one with 699 records, and another with five millions records. The experimental results show that the performance of the proposed framework outperforms other existing approaches while considering several evaluation metrics.


Author(s):  
Monika Singh ◽  
Anand Singh Singh Jalal ◽  
Ruchira Manke ◽  
Aamir Khan

Saliency detection has always been a challenging and interesting research area for researchers. The existing methodologies either focus on foreground regions or background regions of an image by computing low-level features. However, considering only low-level features did not produce worthy results. In this paper, low-level features, which are extracted using super pixels, are embodied with high-level priors. The background features are assumed as the low-level prior due to the similarity in the background areas and boundary of an image which are interconnected and have minimum distance in between them. High-level priors such as location, color, and semantic prior are incorporated with low-level prior to spotlight the salient area in the image. The experimental results illustrate that the proposed approach outperform the sate-of-the-art methods.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Ankang Chu ◽  
Yingxu Lai ◽  
Jing Liu

Intrusion detection is essential for ensuring the security of industrial control systems. However, conventional intrusion detection approaches are unable to cope with the complexity and ever-changing nature of industrial intrusion attacks. In this study, we propose an industrial control intrusion detection approach based on a combined deep learning model for communication processes that use the Modbus protocol. Initially, the network packets are classified as carrying information and noncarrying information based on key fields according to the communication protocol used. Next, a template comparison approach is employed to detect the network packets that do not carry any information. Furthermore, an approach based on a GoogLeNet-long short-term memory model is used to detect the network packets that do carry information. This approach involves network packet sequence construction, feature extraction, and time-series level detection. Subsequently, the detected intrusions are classified into multiple categories through a Softmax classifier. A gas pipeline dataset of the Modbus protocol is used to evaluate the proposed approach and compare it with existing strategies. The accuracy, false-positive rate, and miss rate are 97.56%, 2.42%, and 2.51%, respectively, thus confirming that the proposed approach is suitable for intrusion detection in industrial control systems.


2020 ◽  
Vol 387 ◽  
pp. 51-62 ◽  
Author(s):  
Cosimo Ieracitano ◽  
Ahsan Adeel ◽  
Francesco Carlo Morabito ◽  
Amir Hussain

Sign in / Sign up

Export Citation Format

Share Document