Automatic Categorization of Web Database Query Results

Author(s):  
Xiangfu Meng ◽  
Li Yan ◽  
Z. M. Ma

Web database queries are often exploratory. The users often find that their queries return too many answers and many of them may be irrelevant. Based on different kinds of user preferences, this chapter proposes a novel categorization approach which consists of two steps. The first step analyzes query history of all users in the system offline and generates a set of clusters over the tuples, where each cluster represents one type of user preference. When a user issues a query, the second step presents to the user a category tree over the clusters generated in the first step such that the user can easily select the subset of query results matching his needs. The problem of constructing a category tree is a cost optimization problem and heuristic algorithms were developed to compute the min-cost categorization. The efficiency and effectiveness of our approach are demonstrated by experimental results.

1989 ◽  
Vol 21 (8-9) ◽  
pp. 1057-1064 ◽  
Author(s):  
Vijay Joshi ◽  
Prasad Modak

Waste load allocation for rivers has been a topic of growing interest. Dynamic programming based algorithms are particularly attractive in this context and are widely reported in the literature. Codes developed for dynamic programming are however complex, require substantial computer resources and importantly do not allow interactions of the user. Further, there is always resistance to utilizing mathematical programming based algorithms for practical applications. There has been therefore always a gap between theory and practice in systems analysis in water quality management. This paper presents various heuristic algorithms to bridge this gap with supporting comparisons with dynamic programming based algorithms. These heuristics make a good use of the insight gained in the system's behaviour through experience, a process akin to the one adopted by field personnel and therefore can readily be understood by a user familiar with the system. Also they allow user preferences in decision making via on-line interaction. Experience has shown that these heuristics are indeed well founded and compare very favourably with the sophisticated dynamic programming algorithms. Two examples have been included which demonstrate such a success of the heuristic algorithms.


2021 ◽  
Vol 11 (3) ◽  
pp. 1064
Author(s):  
Jenq-Haur Wang ◽  
Yen-Tsang Wu ◽  
Long Wang

In social networks, users can easily share information and express their opinions. Given the huge amount of data posted by many users, it is difficult to search for relevant information. In addition to individual posts, it would be useful if we can recommend groups of people with similar interests. Past studies on user preference learning focused on single-modal features such as review contents or demographic information of users. However, such information is usually not easy to obtain in most social media without explicit user feedback. In this paper, we propose a multimodal feature fusion approach to implicit user preference prediction which combines text and image features from user posts for recommending similar users in social media. First, we use the convolutional neural network (CNN) and TextCNN models to extract image and text features, respectively. Then, these features are combined using early and late fusion methods as a representation of user preferences. Lastly, a list of users with the most similar preferences are recommended. The experimental results on real-world Instagram data show that the best performance can be achieved when we apply late fusion of individual classification results for images and texts, with the best average top-k accuracy of 0.491. This validates the effectiveness of utilizing deep learning methods for fusing multimodal features to represent social user preferences. Further investigation is needed to verify the performance in different types of social media.


2021 ◽  
pp. 1063293X2110195
Author(s):  
Ying Yu ◽  
Shan Li ◽  
Jing Ma

Selecting the most efficient from several functionally equivalent services remains an ongoing challenge. Most manufacturing service selection methods regard static quality of service (QoS) as a major competitiveness factor. However, adaptations are difficult to achieve when variable network environment has significant impact on QoS performance stabilization in complex task processes. Therefore, dynamic temporal QoS values rather than fixed values are gaining ground for service evaluation. User preferences play an important role when service demanders select personalized services, and this aspect has been poorly investigated for temporal QoS-aware cloud manufacturing (CMfg) service selection methods. Furthermore, it is impractical to acquire all temporal QoS values, which affects evaluation validity. Therefore, this paper proposes a time-aware CMfg service selection approach to address these issues. The proposed approach first develops an unknown-QoS prediction model by utilizing similarity features from temporal QoS values. The model considers QoS attributes and service candidates integrally, helping to predict multidimensional QoS values accurately and easily. Overall QoS is then evaluated using a proposed temporal QoS measuring algorithm which can self-adapt to user preferences. Specifically, we employ the temporal QoS conflict feature to overcome one-sided user preferences, which has been largely overlooked previously. Experimental results confirmed that the proposed approach outperformed classical time series prediction methods, and can also find better service by reducing user preference misjudgments.


2017 ◽  
Vol 158 (38) ◽  
pp. 1483-1487
Author(s):  
Vilmos Bíró

Abstract: The author summarizes briefly the history of hand allograft transplantation, the basics of the operative technics, and the medicinal treatment of the immunosuppression. He establishes that this operation requires complicated team-work: many specialists must be united in the interest of the successful final outcome. The biggest problem is not the technical challenge of the complicated operation, but the ineffectiveness of immunosuppression, its complications; even though significant development has happened in this field and experimental results are also encouraging. The author discusses these questions in this publication in the mirror of literature data. He states, that a successful hand transplantation, with its sensory and motoric functions can increase quality of life, in contrast with the ortheses. Orv Hetil. 2017; 158(38): 1483–1487.


Author(s):  
ChunYan Yin ◽  
YongHeng Chen ◽  
Wanli Zuo

AbstractPreference-based recommendation systems analyze user-item interactions to reveal latent factors that explain our latent preferences for items and form personalized recommendations based on the behavior of others with similar tastes. Most of the works in the recommendation systems literature have been developed under the assumption that user preference is a static pattern, although user preferences and item attributes may be changed through time. To achieve this goal, we develop an Evolutionary Social Poisson Factorization (EPF$$\_$$ _ Social) model, a new Bayesian factorization model that can effectively model the smoothly drifting latent factors using Conjugate Gamma–Markov chains. Otherwise, EPF$$\_$$ _ Social can obtain the impact of friends on social network for user’ latent preferences. We studied our models with two large real-world datasets, and demonstrated that our model gives better predictive performance than state-of-the-art static factorization models.


Author(s):  
Wei Yan ◽  
Li Yan ◽  
Z. M. Ma

This paper proposes a contextual preference query method of XML structural relaxation and content scoring to resolve the problem of empty or too many answers returned by XML. This paper proposes a XML contextual preference (XCP) model, where all the possible relaxing queries are determined by the users’ preferences. The XCP model allows users to express their interests on XML tree nodes, and then users assign interest scores to their interesting nodes for providing the best answers. A preference query results ranking method is proposed based on the XCP model, which includes: a Clusters_Merging algorithm to merge clusters based on the similarity of the context states, a Finding_Orders algorithm to find representative orders of the clusters, and a Top-k ranking algorithm to deal with the many answers problem. Results of preliminary user studies demonstrate that the method can provide users with most relevant and ranked query results. The efficiency and effectiveness of the approach are also demonstrated by experimental results.


Author(s):  
Liqing Qiu ◽  
Shuang Zhang ◽  
Chunmei Gu ◽  
Xiangbo Tian

Influence maximization is a problem that aims to select top [Formula: see text] influential nodes to maximize the spread of influence in social networks. The classical greedy-based algorithms and their improvements are relatively slow or not scalable. The efficiency of heuristic algorithms is fast but their accuracy is unacceptable. Some algorithms improve the accuracy and efficiency by consuming a large amount of memory usage. To overcome the above shortcoming, this paper proposes a fast and scalable algorithm for influence maximization, called K-paths, which utilizes the influence tree to estimate the influence spread. Additionally, extensive experiments demonstrate that the K-paths algorithm outperforms the comparison algorithms in terms of efficiency while keeping competitive accuracy.


2009 ◽  
pp. 284-313
Author(s):  
Edgar Jembere ◽  
Matthew O. Adigun ◽  
Sibusiso S. Xulu

Human Computer Interaction (HCI) challenges in highly dynamic computing environments can be solved by tailoring the access and use of services to user preferences. In this era of emerging standards for open and collaborative computing environments, the major challenge that is being addressed in this chapter is how personalisation information can be managed in order to support cross-service personalisation. The authors’ investigation of state of the art work in personalisation and context-aware computing found that user preferences are assumed to be static across different context descriptions whilst in reality some user preferences are transient and vary with changes in context. Further more, the assumed preference models do not give an intuitive interpretation of a preference and lack user expressiveness. This chapter presents a user preference model for dynamic computing environments, based on an intuitive quantitative preference measure and a strict partial order preference representation, to address these issues. The authors present an approach for mining context-based user preferences and its evaluation in a synthetic m-commerce environment. This chapter also shows how the data needed for mining context-based preferences is gathered and managed in a Grid infrastructure for mobile devices.


Sign in / Sign up

Export Citation Format

Share Document