Software Support for Advanced Cephalometric Analysis in Orthodontics

2011 ◽  
pp. 926-948
Author(s):  
Demetrios J. Halazonetis

Cephalometric analysis has been a routine diagnostic procedure in Orthodontics for more than 60 years, traditionally employing the measurement of angles and distances on lateral cephalometric radiographs. Recently, advances in geometric morphometric (GM) methods and computed tomography (CT) hardware, together with increased power of personal computers, have created a synergic effect that is revolutionizing the cephalometric field. This chapter starts with a brief introduction of GM methods, including Procrustes superimposition, Principal Component Analysis, and semilandmarks. CT technology is discussed next, with a more detailed explanation of how the CT data are manipulated in order to visualize the patient’s anatomy. Direct and indirect volume rendering methods are explained and their application is shown with clinical cases. Finally, the Viewbox software is described, a tool that enables practical application of sophisticated diagnostic and research methods in Orthodontics.

Author(s):  
Demetrios J. Halazonetis

Cephalometric analysis has been a routine diagnostic procedure in Orthodontics for more than 60 years, traditionally employing the measurement of angles and distances on lateral cephalometric radiographs. Recently, advances in geometric morphometric (GM) methods and computed tomography (CT) hardware, together with increased power of personal computers, have created a synergic effect that is revolutionizing the cephalometric field. This chapter starts with a brief introduction of GM methods, including Procrustes superimposition, Principal Component Analysis, and semilandmarks. CT technology is discussed next, with a more detailed explanation of how the CT data are manipulated in order to visualize the patient’s anatomy. Direct and indirect volume rendering methods are explained and their application is shown with clinical cases. Finally, the Viewbox software is described, a tool that enables practical application of sophisticated diagnostic and research methods in Orthodontics.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245445
Author(s):  
Yameng Zhang ◽  
Lynne A. Schepartz

Objectives To investigate three-dimensional morphological variation of the occipital bone between sexes and among populations, to determine how ancestry, sex and size account for occipital shape variation and to describe the exact forms by which the differences are expressed. Methods CT data for 214 modern crania of Asian, African and European ancestry were compared using 3D geometric morphometrics and multivariate statistics, including principal component analysis, Hotelling’s T2 test, multivariate regression, ANOVA, and MANCOVA. Results Sex differences in average occipital morphology are only observed in Europeans, with males exhibiting a pronounced inion. Significant ancestral differences are observed among all samples and are shared by males and females. Asian and African crania have smaller biasterionic breadths and flatter clivus angles compared to Europeans. Asian and European crania are similar in their nuchal and occipital plane proportions, nuchal and occipital angles, and lower inion positions compared to Africans. Centroid size significantly differs between sexes and among populations. The overall allometry, while significant, explains little of the shape variation. Larger occipital bones were associated with a more curved occipital plane, a pronounced inion, a narrower biasterionic breadth, a more flexed clivus, and a lower and relatively smaller foramen magnum. Conclusions Although significant shape differences were observed among populations, it is not recommended to use occipital morphology in sex or population estimation as both factors explained little of the observed variance. Other factors, relating to function and the environment, are suggested to be greater contributors to occipital variation. For the same reason, it is also not recommended to use the occiput in phylogenetic studies.


Author(s):  
Jesús García-Grajales ◽  
Juan Francisco Meraz ◽  
José Luis Arcos García ◽  
Eustacio Ramírez Méndez

The influence of nest incubation temperatures on the carapace shape and morphological traits of Dermochelys coriacea (Vandelli 1761) hatchlings incubated in two hatcheries of Oaxaca, Mexico was evaluated. This study was carried out from October 2016 through May 2017. On each beach, there are community groups consisting of volunteers without association with universities, that protect and relocate the nests to increase hatching success. In each translocated nest, a data logger was placed in the centre of the egg mass. Hatchlings were collected as they emerged from each nest. The carapaces of the hatchlings were photographed and subjected to geometric morphometric analysis; later, hatchlings were weighed and their bodies were measured. The mean temperature of 12 nests in each hatchery were recorded, with no significant differences between hatcheries. The principal component analysis (PCA) revealed an overlapping of the carapace shape under different duration of temperature. Temperature had a significant influence on hatchling morphology. Higher mean incubation temperatures produced hatchlings with low weight, smaller appendage; narrower carapace width and shorter flippers length. Lower mean incubation temperatures produced hatchlings that had greater weight, greater appendage width, wider carapace width and longer flipper length. Results indicate that the D. coriacea hatchlings incubated in hatcheries demonstrate morphology that varies in relation to nest incubation temperature in a similar way to hatchlings produced in natural environments.


2020 ◽  
Vol 28 (1) ◽  
pp. 104-120
Author(s):  
Tibor Pecsics ◽  
Miklós Laczi ◽  
Gergely Nagy ◽  
Tamás Kondor ◽  
Tibor Csörgő

AbstractParrots (Psittaciformes) are a unique and diverse avian group and vary tremendously in size, shape, and colour. Mainly distributed throughout the tropics and subtropics, most species of parrots are largely or exclusively arboreal with several exceptions. The species also differ in diet and habitat, which led to different musculoskeletal adaptations of the skull. However, parrots have conspicuous generalized external features; in this recent study, we tried to increase our knowledge of the cranial shape and foraging habits. A geometric morphometric approach was used to analyse two-dimensional cranial landmarks. We used principal component (PC) analyses on measurements that may be related to diet. The PCs described the relative height of the cranium, the relative length and curvature of the beak, differences in the orientation and curvature of the lacrimal bone and the upper margin of orbits, variation in the size and position of the palatine bone and the relative width of the cranium, and variation in the relative size of the neurocranium compared to the viscerocranium. The dietary categories overlap in the morphospace but the analysis in lateral and ventral view resulted in significant differences.


2019 ◽  
Author(s):  
Vera Weisbecker ◽  
Thomas Guillerme ◽  
Cruise Speck ◽  
Emma Sherratt ◽  
Hyab Mehari Abraha ◽  
...  

AbstractBackgroundWithin-species skull shape variation of marsupial mammals is widely considered low and strongly size-dependent (allometric), possibly due to developmental constraints arising from the altricial birth of marsupials. However, species whose skulls are impacted by strong muscular stresses – particularly those produced through mastication of tough food items – may not display such intrinsic patterns very clearly because of the known plastic response of bone to muscle activity of the individual. In such cases, shape variation should not be dominated by allometry; ordination of shape in a geometric morphometric context through principal component analysis (PCA) should reveal main variation in areas under masticatory stress (incisor region/zygomatic arches/mandibular ramus); but this main variation should emerge from high individual variability and thus have low eigenvalues.ResultsWe assessed the evidence for high individual variation through 3D geometric morphometric shape analysis of crania and mandibles of thre species of grazing-specialized wombats, whose diet of tough grasses puts considerable strain on their masticatory system. As expected, we found little allometry and low Principal Component 1 (PC1) eigenvalues within crania and mandibles of all three species. Also as expected, the main variation was in the muzzle, zygomatic arches, and masticatory muscle attachments of the mandibular ramus. We then implemented a new test to ask if the landmark variation reflected on PC1 was reflected in individuals with opposite PC1 scores and with opposite shapes in Procrustes space. This showed that correspondence between individual and ordinated shape variation was limited, indicating high levels of individual variability in the masticatory apparatus.DiscussionOur results are inconsistent with hypotheses that skull shape variation within marsupial species reflects a constraint pattern. Rather, they support suggestions that individual plasticity can be an important determinant of within-species shape variation in marsupials (and possibly other mammals) with high masticatory stresses, making it difficult to understand the degree to which intrinsic constraint act on shape variation at the within-species level. We conclude that studies that link micro- and macroevolutionary patterns of shape variation might benefit from a focus on species with low-impact mastication, such as carnivorous or frugivorous species.


Author(s):  
Jasper John A. Obico ◽  
Julie F. Barcelona ◽  
Vincent Bonhomme ◽  
Marie Hale ◽  
Pieter B. Pelser

Tetrastigma loheri (Vitaceae) is a vine species native to Borneo and the Philippines. Because it is a commonly encountered forest species in the Philippines, T. loheri is potentially suitable for studying patterns of genetic diversity and connectivity among fragmented forestecosystems in various parts of this country. However, previous research suggests that T. loheri is part of a species complex in the Philippines (i.e. the T. loheri s. l. complex) that potentially also contains Philippine plants identified as T. diepenhorstii, T. philippinense, T. stenophyllum, andT. trifoliolatum. This uncertainty about its taxonomic delimitation can make it challenging to draw conclusions that are relevant to conservation from genetic studies using this species. Here, we tested the hypothesis that T. loheri s. l. is composed of more than one species in the Philippines.For this, we used generalized mixed Yule coalescent (GMYC) and Poisson tree process (PTP) species delimitation models to identify clades within DNA sequence phylogenies of T. loheri s. l. that might constitute species within this complex. Although these methods identified several putative species, these are statistically poorly supported and subsequent random forest analyses using a geometric morphometric leafshape dataset and several other vegetative characters did not result in the identification of characters that can be used to discriminate these putative species morphologically. Furthermore, the results of principal component and principal coordinates analyses of these data suggest the absence of morphological discontinuities within the species complex. Under a unified species concept that uses phylogenetic and morphological distinction as operational criteria for species recognition, we therefore conclude that the currently available data do not support recognizing multiple species in the T. loheri s. l. complex. This implies that T. loheri is best considered as a single, morphologically variable specieswhen used for studying patterns of genetic diversity and connectivity in the Philippines.


Author(s):  
Javier H. Signorelli ◽  
Federico Márquez ◽  
Guido Pastorino

The phenotypic shell shape variation of Mactra isabelleana was tested using the geometric morphometric method. Four localities were sampled along the Río de la Plata estuary and the coast of Buenos Aires province. Principal component analysis and canonical variates analysis of the first principal components were performed to reveal the shell variation and differences among localities, respectively. The specimens from different microhabitats mostly overlapped, although differences in shape were observed in the development of the umbo, the enlargement of the dorsoventral axes and the elongation of the posterior end. The ecological and physical parameters that could influence shell shape variation are discussed.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1759
Author(s):  
Daniela Schenone ◽  
Alida Dominietto ◽  
Cristina Campi ◽  
Francesco Frassoni ◽  
Michele Cea ◽  
...  

Multiple myeloma is a plasma cell dyscrasia characterized by focal and non-focal bone lesions. Radiomic techniques extract morphological information from computerized tomography images and exploit them for stratification and risk prediction purposes. However, few papers so far have applied radiomics to multiple myeloma. A retrospective study approved by the institutional review board: n = 51 transplanted patients and n = 33 (64%) with focal lesion analyzed via an open-source toolbox that extracted 109 radiomics features. We also applied a dedicated tool for computing 24 features describing the whole skeleton asset. The redundancy reduction was realized via correlation and principal component analysis. Fuzzy clustering (FC) and Hough transform filtering (HTF) allowed for patient stratification, with effectiveness assessed by four skill scores. The highest sensitivity and critical success index (CSI) were obtained representing each patient, with 17 focal features selected via correlation with the 24 features describing the overall skeletal asset. These scores were higher than the ones associated with a standard cytogenetic classification. The Mann–Whitney U-test showed that three among the 17 imaging descriptors passed the null hypothesis. This AI-based interpretation of radiomics features stratified relapsed and non-relapsed MM patients, showing some potentiality for the determination of the prognostic image-based biomarkers in disease follow-up.


Sign in / Sign up

Export Citation Format

Share Document