Realizing Interval Type-2 Fuzzy Systems with Type-1 Fuzzy Systems

Author(s):  
Mamta Khosla ◽  
R K Sarin ◽  
Moin Uddin ◽  
Satvir Singh ◽  
Arun Khosla

In this chapter, the authors have realized Interval Type-2 Fuzzy Logic Systems (IT2 FLSs) with the average of two Type-1 Fuzzy Logic Systems (T1 FLSs). The authors have presented two case studies by applying this realization methodology on (i) an arbitrary system, where an IT2 FLS is considered, in which its footprint of uncertainty (FOU) is expressed using Principal T1 FS+FOU approach, and the second (ii) the Mackey-Glass time-series forecasting. In the second case study, T1 FLS is evolved using Particle Swarm Optimization (PSO) algorithm for the Mackey-Glass time-series data with added noise, and is then upgraded to IT2 FLS by adding FOU. Further, four experiments are conducted in this case study for four different noise levels. For each case study, a comparative study of the results of the average of two T1 FLSs and the corresponding IT2 FLS, obtained through computer simulations in MATLAB environment, is presented to demonstrate the effectiveness of the realization approach. Very low values of Mean Square Error (MSE) and Root Mean Square Error (RMSE) demonstrate that IT2 FLS performance is equivalent to the average of two T1 FLSs. This approach is helpful in the absence of the availability of development tools for T2 FLSs or because of complexity and difficulty in understanding T2 FLSs that makes the implementation difficult. It provides an easy route to the simulation/realization of IT2 FLSs and by following this approach, all existing tools/methodologies for the design, simulation and realization of T1 FLSs can be directly extended to T2 FLSs.

2011 ◽  
Vol 181 (7) ◽  
pp. 1325-1347 ◽  
Author(s):  
Mohammad Biglarbegian ◽  
William Melek ◽  
Jerry Mendel

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4445
Author(s):  
M. A. Viraj J. Muthugala ◽  
S. M. Bhagya P. Samarakoon ◽  
Madan Mohan Rayguru ◽  
Balakrishnan Ramalingam ◽  
Mohan Rajesh Elara

Infectious diseases are caused by pathogenic microorganisms, whose transmission can lead to global pandemics like COVID-19. Contact with contaminated surfaces or objects is one of the major channels of spreading infectious diseases among the community. Therefore, the typical contaminable surfaces, such as walls and handrails, should often be cleaned using disinfectants. Nevertheless, safety and efficiency are the major concerns of the utilization of human labor in this process. Thereby, attention has drifted toward developing robotic solutions for the disinfection of contaminable surfaces. A robot intended for disinfecting walls should be capable of following the wall concerned, while maintaining a given distance, to be effective. The ability to operate in an unknown environment while coping with uncertainties is crucial for a wall disinfection robot intended for deployment in public spaces. Therefore, this paper contributes to the state-of-the-art by proposing a novel method of establishing the wall-following behavior for a wall disinfection robot using fuzzy logic. A non-singleton Type 1 Fuzzy Logic System (T1-FLS) and a non-singleton Interval Type 2 Fuzzy Logic System (IT2-FLS) are developed in this regard. The wall-following behavior of the two fuzzy systems was evaluated through simulations by considering heterogeneous wall arrangements. The simulation results validate the real-world applicability of the proposed FLSs for establishing the wall-following behavior for a wall disinfection robot. Furthermore, the statistical outcomes show that the IT2-FLS has significantly superior performance than the T1-FLS in this application.


2015 ◽  
Vol 15 (05) ◽  
pp. 1550083 ◽  
Author(s):  
SHAHRZAD GHOLAMI ◽  
ARIA ALASTY ◽  
HASSAN SALARIEH ◽  
MEHDI HOSSEINIAN-SARAJEHLOU

This paper deals with growth control of cancer cells population using type-1 and interval type-2 fuzzy logic. A type-1 fuzzy controller is designed in order to reduce the population of cancer cells, adjust the drug dosage in a manner that allows normal cells re-grow in treatment period and maintain the maximum drug delivery rate and plasma concentration of drug in an appropriate range. Two different approaches are studied. One deals with reducing the number of cancer cells without any concern about the rate of decreasing, and the other takes the rate of malignant cells damage into consideration. Due to the fact that uncertainty is an inherent part of real systems and affects controller efficacy, employing new methods of design such as interval type-2 fuzzy logic systems for handling uncertainties may be efficacious. Influence of noise on the system is investigated and the effect of altering free parameters of design is studied. Using an interval type-2 controller can diminish the effects of incomplete and uncertain information about the system, environmental noises, instrumentation errors, etc. Simulation results confirm the effectiveness of the proposed methods on tumor growth control.


2014 ◽  
Vol 24 ◽  
pp. 900-911 ◽  
Author(s):  
Gerardo M. Méndez ◽  
Oscar Castillo ◽  
Rafael Colás ◽  
Héctor Moreno

Sign in / Sign up

Export Citation Format

Share Document