Smart ECG Monitoring Through IoT

Author(s):  
Ibtihel Nouira ◽  
Mohamed Hadj Said

The emergence of internet of things allows the integration of health systems by enabling real-time monitoring with a low cost. Therefore, one of the essential targets in this work is the realization of a new smart real-time electrocardiogram remote monitoring system based on cloud networks. This health wireless system allows the acquisition of electrocardiogram signal with the temperature and acceleration measurement of the patient's body using the inertial measurement unit module sensor. A strong access schemes is employed to transfer the data from sensors to cloud environment by keeping the protection of e-health information. The second objective in this chapter is designing a flexible and stretchable health circuit basing on design considerations, aiming the combination of flexible, elastic, and rigid materials around minimal constraints and maximum mechanical dependability in the structures. The flexible fabrication part was inspired from the biocompatible process technology.

Biosensors ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 29 ◽  
Author(s):  
Tam Nguyen ◽  
Jonathan Young ◽  
Amanda Rodriguez ◽  
Steven Zupancic ◽  
Donald Lie

Balance disorders present a significant healthcare burden due to the potential for hospitalization or complications for the patient, especially among the elderly population when considering intangible losses such as quality of life, morbidities, and mortalities. This work is a continuation of our earlier works where we now examine feature extraction methodology on Dynamic Gait Index (DGI) tests and machine learning classifiers to differentiate patients with balance problems versus normal subjects on an expanded cohort of 60 patients. All data was obtained using our custom designed low-cost wireless gait analysis sensor (WGAS) containing a basic inertial measurement unit (IMU) worn by each subject during the DGI tests. The raw gait data is wirelessly transmitted from the WGAS for real-time gait data collection and analysis. Here we demonstrate predictive classifiers that achieve high accuracy, sensitivity, and specificity in distinguishing abnormal from normal gaits. These results show that gait data collected from our very low-cost wearable wireless gait sensor can effectively differentiate patients with balance disorders from normal subjects in real-time using various classifiers. Our ultimate goal is to be able to use a remote sensor such as the WGAS to accurately stratify an individual’s risk for falls.


2020 ◽  
Vol 9 (3) ◽  
pp. 44
Author(s):  
Leonor Varandas ◽  
João Faria ◽  
Pedro Gaspar ◽  
Martim Aguiar

Population growth and climate change lead agricultural cultures to face environmental degradation and rising of resistant diseases and pests. These conditions result in reduced product quality and increasing risk of harmful toxicity to human health. Thus, the prediction of the occurrence of diseases and pests and the consequent avoidance of the erroneous use of phytosanitary products will contribute to improving food quality and safety and environmental land protection. This study presents the design and construction of a low-cost IoT sensor mesh that enables the remote measurement of parameters of large-scale orchards. The developed remote monitoring system transmits all monitored data to a central node via LoRaWAN technology. To make the system nodes fully autonomous, the individual nodes were designed to be solar-powered and to require low energy consumption. To improve the user experience, a web interface and a mobile application were developed, which allow the monitored information to be viewed in real-time. Several experimental tests were performed in an olive orchard under different environmental conditions. The results indicate an adequate precision and reliability of the system and show that the system is fully adequate to be placed in remote orchards located at a considerable distance from networks, being able to provide real-time parameters monitoring of both tree and the surrounding environment.


Author(s):  
Javier Garcia-Guzman ◽  
Lisardo Prieto González ◽  
Jonatan Pajares Redondo ◽  
Mat Max Montalvo Martinez ◽  
María Jesús López Boada

Given the high number of vehicle-crash victims, it has been established as a priority to reduce this figure in the transportation sector. For this reason, many of the recent researches are focused on including control systems in existing vehicles, to improve their stability, comfort and handling. These systems need to know in every moment the behavior of the vehicle (state variables), among others, when the different maneuvers are performed, to actuate by means of the systems in the vehicle (brakes, steering, suspension) and, in this way, to achieve a good behavior. The main problem arises from the lack of ability to directly capture several required dynamic vehicle variables, such as roll angle, from low-cost sensors. Previous studies demonstrate that low-cost sensors can provide data in real-time with the required precision and reliability. Even more, other research works indicate that neural networks are efficient mechanisms to estimate roll angle. Nevertheless, it is necessary to assess that the fusion of data coming from low-cost devices and estimations provided by neural networks can fulfill the reliability and appropriateness requirements for using these technologies to improve overall safety in production vehicles. Because of the increasing of computing power, the reduction of consumption and electric devices size, along with the high variety of communication technologies and networking protocols using Internet have yield to Internet of Things (IoT) development. In order to address this issue, this study has two main goals: 1) Determine the appropriateness and performance of neural networks embedded in low-cost sensors kits to estimate roll angle required to evaluate rollover risk situations. 2) Compare the low-cost control unit devices (Intel Edison and Raspberry Pi 3 Model B), to provide the roll angle estimation with this artificial neural network-based approach. To fulfil these objectives an experimental environment has been set up composed of a van with two set of low-cost kits, one including a Raspberry Pi 3 Model B, low cost Inertial Measurement Unit (BNO055 - 37€) and GPS (Mtk3339 - 53€) and the other having an Intel Edison System on Chip linked to a SparkFun 9 Degrees of Freedom module. This experimental environment will be tested in different maneuvers for comparison purposes. Neural networks embedded in low-cost sensor kits provide roll angle estimations very approximated to real values. Even more, Intel Edison and Raspberry Pi 3 Model B have enough computing capabilities to successfully run roll angle estimation based on neural networks to determine rollover risks situation fulfilling real-time operation restrictions stated for this problem.


2020 ◽  
Vol 10 (15) ◽  
pp. 5064
Author(s):  
Xuancen Liu ◽  
Yueneng Yang ◽  
Chenxiang Ma ◽  
Jie Li ◽  
Shifeng Zhang

Unmanned Aerial Vehicles (UAVs) have recently shown great performance collecting visual data through autonomous exploration and mapping, which are widely used in reconnaissance, surveillance, and target acquisition (RSTA) applications. In this paper, we present an onboard vision-based system for low-cost UAVs to autonomously track a moving target. Real-time visual tracking is achieved by using an object detection algorithm based on the Kernelized Correlation Filter (KCF) tracker. A 3-axis gimbaled camera with separate Inertial Measurement Unit (IMU) is used to aim at the selected target during flights. The flight control algorithm for tracking tasks is implemented on a customized quadrotor equipped with an onboard computer and a microcontroller. The proposed system is experimentally validated by successfully chasing a ground and aerial target in an outdoor environment, which has proven its reliability and efficiency.


2021 ◽  
Author(s):  
Geldhof Batist ◽  
Pattyn Jolien ◽  
Eyland David ◽  
Carpentier Sebastien ◽  
Van de Poel Bram

Abstract Plant and plant organ movements are the result of a complex integration of endogenous growth and developmental responses, partially controlled by the circadian clock, and external environmental cues. Monitoring of plant motion is typically done by image-based phenotyping techniques with the aid of computer vision algorithms. Here we present a method to measure leaf movements using a digital inertial measurement unit (IMU) sensor. The lightweight sensor is easily attachable to a leaf or plant organ and records angular traits in real-time for two dimensions (pitch and roll) with high resolution (measured sensor oscillations of 0.36° ± 0.53° for pitch and 0.50° ± 0.65° for roll). We were able to record simple movements such as petiole bending, as well as complex lamina motions, in several crops, ranging from tomato to banana. We also assessed growth responses in terms of lettuce rosette expansion and maize seedling stem movements. The IMU sensors are capable of detecting small changes of nutations (i.e., bending movements) in leaves of different ages and in different plant species. In addition, the sensor system can also monitor stress-induced leaf movements. We observed that unfavorable environmental conditions evoke certain leaf movements, such as drastic epinastic responses, as well as subtle fading of the amplitude of nutations. In summary, the presented digital sensor system enables continuous detection of a variety of leaf motions with high precision, and is a low-cost tool in the field of plant phenotyping, with potential applications in early stress detection.


2019 ◽  
Vol 10 (1) ◽  
pp. 160-166 ◽  
Author(s):  
Vu Trieu Minh ◽  
Nikita Katushin ◽  
John Pumwa

AbstractThis project designs a smart glove, which can be used for motion tracking in real time to a 3D virtual robotic arm in a PC. The glove is low cost with the price of less than 100 € and uses only internal measurement unit for students to develop their projects on augmented and virtual reality applications. Movement data from the glove is transferred to the PC via UART DMA. The data is set as the motion reference path for the 3D virtual robotic arm to follow. APID feedback controller controls the 3D virtual robot to track exactly the haptic glove movement with zero error in real time. This glove can be used also for remote control, tele-robotics and tele-operation systems.


Author(s):  
Gabriel de Almeida Souza ◽  
Larissa Barbosa ◽  
Glênio Ramalho ◽  
Alexandre Zuquete Guarato

2007 ◽  
Author(s):  
R. E. Crosbie ◽  
J. J. Zenor ◽  
R. Bednar ◽  
D. Word ◽  
N. G. Hingorani

Author(s):  
SRIKANTH MADIREDDY ◽  
MOH ANA.J ◽  
C.KEERTHI KANTH ◽  
P. SRIHARI REDDY

Sign in / Sign up

Export Citation Format

Share Document