scholarly journals Real-time Vehicle Roll Angle Estimation based on IoT low-cost devices and Neural Networks

Author(s):  
Javier Garcia-Guzman ◽  
Lisardo Prieto González ◽  
Jonatan Pajares Redondo ◽  
Mat Max Montalvo Martinez ◽  
María Jesús López Boada

Given the high number of vehicle-crash victims, it has been established as a priority to reduce this figure in the transportation sector. For this reason, many of the recent researches are focused on including control systems in existing vehicles, to improve their stability, comfort and handling. These systems need to know in every moment the behavior of the vehicle (state variables), among others, when the different maneuvers are performed, to actuate by means of the systems in the vehicle (brakes, steering, suspension) and, in this way, to achieve a good behavior. The main problem arises from the lack of ability to directly capture several required dynamic vehicle variables, such as roll angle, from low-cost sensors. Previous studies demonstrate that low-cost sensors can provide data in real-time with the required precision and reliability. Even more, other research works indicate that neural networks are efficient mechanisms to estimate roll angle. Nevertheless, it is necessary to assess that the fusion of data coming from low-cost devices and estimations provided by neural networks can fulfill the reliability and appropriateness requirements for using these technologies to improve overall safety in production vehicles. Because of the increasing of computing power, the reduction of consumption and electric devices size, along with the high variety of communication technologies and networking protocols using Internet have yield to Internet of Things (IoT) development. In order to address this issue, this study has two main goals: 1) Determine the appropriateness and performance of neural networks embedded in low-cost sensors kits to estimate roll angle required to evaluate rollover risk situations. 2) Compare the low-cost control unit devices (Intel Edison and Raspberry Pi 3 Model B), to provide the roll angle estimation with this artificial neural network-based approach. To fulfil these objectives an experimental environment has been set up composed of a van with two set of low-cost kits, one including a Raspberry Pi 3 Model B, low cost Inertial Measurement Unit (BNO055 - 37€) and GPS (Mtk3339 - 53€) and the other having an Intel Edison System on Chip linked to a SparkFun 9 Degrees of Freedom module. This experimental environment will be tested in different maneuvers for comparison purposes. Neural networks embedded in low-cost sensor kits provide roll angle estimations very approximated to real values. Even more, Intel Edison and Raspberry Pi 3 Model B have enough computing capabilities to successfully run roll angle estimation based on neural networks to determine rollover risks situation fulfilling real-time operation restrictions stated for this problem.

Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2188 ◽  
Author(s):  
Javier García Guzmán ◽  
Lisardo Prieto González ◽  
Jonatan Pajares Redondo ◽  
Mat Montalvo Martínez ◽  
María L. Boada

2017 ◽  
Vol 5 (5) ◽  
pp. 320-325
Author(s):  
Ahmad T. Jaiad ◽  
Hamzah Sabr Ghayyib

Water is the most precious and valuable because it’s a basic need of all the human beings but, now a day water supply department are facing problem in real time operation this is because less amount of water in resources due to less rain fall. With increase in Population, urban residential areas have increased because of this reasons water has become a crucial problem which affects the problem of water distribution, interrupted water supply, water conservation, water consumption and also the water quality so, to overcome water supply related problems and make system efficient there is need of proper monitoring and controlling system. In this project, we are focusing on continuous and real time monitoring of water supply in IOT platform. Water supply with continuous monitoring makes a proper distribution so that, we can have a record of available amount of water in tanks, flow rate, abnormality in distribution line. Internet of things is nothing but the network of physical objects embedded with electronics, sensors, software, and network connectivity. Monitoring can be done from anywhere as central office. Using Adafruit as free sever data continuously pushed on cloud so we can see data in real time operation. Using different sensors with controller and raspberry pi as Mini computer can monitor data and also control operation from cloud with efficient client server communication.


2021 ◽  
Author(s):  
Nicholas Parkyn

Emerging heterogeneous computing, computing at the edge, machine learning and AI at the edge technology drives approaches and techniques for processing and analysing onboard instrument data in near real-time. The author has used edge computing and neural networks combined with high performance heterogeneous computing platforms to accelerate AI workloads. Heterogeneous computing hardware used is readily available, low cost, delivers impressive AI performance and can run multiple neural networks in parallel. Collecting, processing and machine learning from onboard instruments data in near real-time is not a trivial problem due to data volumes, complexities of data filtering, data storage and continual learning. Little research has been done on continual machine learning which aims at a higher level of machine intelligence through providing the artificial agents with the ability to learn from a non-stationary and never-ending stream of data. The author has applied the concept of continual learning to building a system that continually learns from actual boat performance and refines predictions previously done using static VPP data. The neural networks used are initially trained using the output from traditional VPP software and continue to learn from actual data collected under real sailing conditions. The author will present the system design, AI, and edge computing techniques used and the approaches he has researched for incremental training to realise continual learning.


Biosensors ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 29 ◽  
Author(s):  
Tam Nguyen ◽  
Jonathan Young ◽  
Amanda Rodriguez ◽  
Steven Zupancic ◽  
Donald Lie

Balance disorders present a significant healthcare burden due to the potential for hospitalization or complications for the patient, especially among the elderly population when considering intangible losses such as quality of life, morbidities, and mortalities. This work is a continuation of our earlier works where we now examine feature extraction methodology on Dynamic Gait Index (DGI) tests and machine learning classifiers to differentiate patients with balance problems versus normal subjects on an expanded cohort of 60 patients. All data was obtained using our custom designed low-cost wireless gait analysis sensor (WGAS) containing a basic inertial measurement unit (IMU) worn by each subject during the DGI tests. The raw gait data is wirelessly transmitted from the WGAS for real-time gait data collection and analysis. Here we demonstrate predictive classifiers that achieve high accuracy, sensitivity, and specificity in distinguishing abnormal from normal gaits. These results show that gait data collected from our very low-cost wearable wireless gait sensor can effectively differentiate patients with balance disorders from normal subjects in real-time using various classifiers. Our ultimate goal is to be able to use a remote sensor such as the WGAS to accurately stratify an individual’s risk for falls.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4093
Author(s):  
Alimed Celecia ◽  
Karla Figueiredo ◽  
Marley Vellasco ◽  
René González

The adequate automatic detection of driver fatigue is a very valuable approach for the prevention of traffic accidents. Devices that can determine drowsiness conditions accurately must inherently be portable, adaptable to different vehicles and drivers, and robust to conditions such as illumination changes or visual occlusion. With the advent of a new generation of computationally powerful embedded systems such as the Raspberry Pi, a new category of real-time and low-cost portable drowsiness detection systems could become standard tools. Usually, the proposed solutions using this platform are limited to the definition of thresholds for some defined drowsiness indicator or the application of computationally expensive classification models that limits their use in real-time. In this research, we propose the development of a new portable, low-cost, accurate, and robust drowsiness recognition device. The proposed device combines complementary drowsiness measures derived from a temporal window of eyes (PERCLOS, ECD) and mouth (AOT) states through a fuzzy inference system deployed in a Raspberry Pi with the capability of real-time response. The system provides three degrees of drowsiness (Low-Normal State, Medium-Drowsy State, and High-Severe Drowsiness State), and was assessed in terms of its computational performance and efficiency, resulting in a significant accuracy of 95.5% in state recognition that demonstrates the feasibility of the approach.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1597
Author(s):  
Caio José B. V. Guimarães ◽  
Marcelo A. C. Fernandes

The adoption of intelligent systems with Artificial Neural Networks (ANNs) embedded in hardware for real-time applications currently faces a growing demand in fields such as the Internet of Things (IoT) and Machine to Machine (M2M). However, the application of ANNs in this type of system poses a significant challenge due to the high computational power required to process its basic operations. This paper aims to show an implementation strategy of a Multilayer Perceptron (MLP)-type neural network, in a microcontroller (a low-cost, low-power platform). A modular matrix-based MLP with the full classification process was implemented as was the backpropagation training in the microcontroller. The testing and validation were performed through Hardware-In-the-Loop (HIL) of the Mean Squared Error (MSE) of the training process, classification results, and the processing time of each implementation module. The results revealed a linear relationship between the values of the hyperparameters and the processing time required for classification, also the processing time concurs with the required time for many applications in the fields mentioned above. These findings show that this implementation strategy and this platform can be applied successfully in real-time applications that require the capabilities of ANNs.


Sign in / Sign up

Export Citation Format

Share Document