The Effect of Training Set Distributions for Supervised Learning Artificial Neural Networks on Classification Accuracy

2011 ◽  
pp. 93-108
Author(s):  
Steven Walczak ◽  
Irena Yegorova ◽  
Bruce H. Andrews

Neural networks have been repeatedly shown to outperform traditional statistical modeling techniques for both discriminant analysis and forecasting. While questions regarding the effects of architecture, input variable selection, learning algorithm, and size of training sets on the neural network model’s performance have been addressed, very little attention has been focused on distribution effects of training and out-of-sample populations on neural network performance. This article examines the effect of changing the population distribution within training sets for estimated distribution density functions, in particular for a credit risk assessment problem.

2018 ◽  
Vol 7 (11) ◽  
pp. 430 ◽  
Author(s):  
Krzysztof Pokonieczny

The classification of terrain in terms of passability plays a significant role in the process of military terrain assessment. It involves classifying selected terrain to specific classes (GO, SLOW-GO, NO-GO). In this article, the problem of terrain classification to the respective category of passability was solved by applying artificial neural networks (multilayer perceptron) to generate a continuous Index of Passability (IOP). The neural networks defined this factor for primary fields in two sizes (1000 × 1000 m and 100 × 100 m) based on the land cover elements obtained from Vector Smart Map (VMap) Level 2 and Shuttle Radar Topography Mission (SRTM). The work used a feedforward neural network consisting of three layers. The paper presents a comprehensive analysis of the reliability of the neural network parameters, taking into account the number of neurons, learning algorithm, activation functions and input data configuration. The studies and tests carried out have shown that a well-trained neural network can automate the process of terrain classification in terms of passability conditions.


2019 ◽  
Vol 14 (2) ◽  
pp. 158-164 ◽  
Author(s):  
G. Emayavaramban ◽  
A. Amudha ◽  
T. Rajendran ◽  
M. Sivaramkumar ◽  
K. Balachandar ◽  
...  

Background: Identifying user suitability plays a vital role in various modalities like neuromuscular system research, rehabilitation engineering and movement biomechanics. This paper analysis the user suitability based on neural networks (NN), subjects, age groups and gender for surface electromyogram (sEMG) pattern recognition system to control the myoelectric hand. Six parametric feature extraction algorithms are used to extract the features from sEMG signals such as AR (Autoregressive) Burg, AR Yule Walker, AR Covariance, AR Modified Covariance, Levinson Durbin Recursion and Linear Prediction Coefficient. The sEMG signals are modeled using Cascade Forward Back propagation Neural Network (CFBNN) and Pattern Recognition Neural Network. Methods: sEMG signals generated from forearm muscles of the participants are collected through an sEMG acquisition system. Based on the sEMG signals, the type of movement attempted by the user is identified in the sEMG recognition module using signal processing, feature extraction and machine learning techniques. The information about the identified movement is passed to microcontroller wherein a control is developed to command the prosthetic hand to emulate the identified movement. Results: From the six feature extraction algorithms and two neural network models used in the study, the maximum classification accuracy of 95.13% was obtained using AR Burg with Pattern Recognition Neural Network. This justifies that the Pattern Recognition Neural Network is best suited for this study as the neural network model is specially designed for pattern matching problem. Moreover, it has simple architecture and low computational complexity. AR Burg is found to be the best feature extraction technique in this study due to its high resolution for short data records and its ability to always produce a stable model. In all the neural network models, the maximum classification accuracy is obtained for subject 10 as a result of his better muscle fitness and his maximum involvement in training sessions. Subjects in the age group of 26-30 years are best suited for the study due to their better muscle contractions. Better muscle fatigue resistance has contributed for better performance of female subjects as compared to male subjects. From the single trial analysis, it can be observed that the hand close movement has achieved best recognition rate for all neural network models. Conclusion: In this paper a study was conducted to identify user suitability for designing hand prosthesis. Data were collected from ten subjects for twelve tasks related to finger movements. The suitability of the user was identified using two neural networks with six parametric features. From the result, it was concluded thatfit women doing regular physical exercises aged between 26-30 years are best suitable for developing HMI for designing a prosthetic hand. Pattern Recognition Neural Network with AR Burg extraction features using extension movements will be a better way to design the HMI. However, Signal acquisition based on wireless method is worth considering for the future.


2020 ◽  
Vol 5 (2) ◽  
pp. 221-224
Author(s):  
Joy Oyinye Orukwo ◽  
Ledisi Giok Kabari

Diabetes has always been a silent killer and the number of people suffering from it has increased tremendously in the last few decades. More often than not, people continue with their normal lifestyle, unaware that their health is at severe risk and with each passing day diabetes goes undetected. Artificial Neural Networks have become extensively useful in medical diagnosis as it provides a powerful tool to help analyze, model and make sense of complex clinical data. This study developed a diabetes diagnosis system using feed-forward neural network with supervised learning algorithm. The neural network is systematically trained and tested and a success rate of 90% was achieved.


2013 ◽  
Vol 341-342 ◽  
pp. 856-860
Author(s):  
Hao Ming Yang ◽  
Lan Qing Zhang

Experiment control platform for the neural network decoupling control is constructed for the glass furnace taking heavy oil as fuel. By dual control, the improving Levenberg-Marquardt learning algorithm is discussed in order to improve the learning speed and to satisfy the real control. The neural network decoupling real control based on C-Script language and PLC S7-400 hard system under WINCC is realized with satisfying control results.


Author(s):  
TAO WANG ◽  
XIAOLIANG XING ◽  
XINHUA ZHUANG

In this paper, we describe an optimal learning algorithm for designing one-layer neural networks by means of global minimization. Taking the properties of a well-defined neural network into account, we derive a cost function to measure the goodness of the network quantitatively. The connection weights are determined by the gradient descent rule to minimize the cost function. The optimal learning algorithm is formed as either the unconstraint-based or the constraint-based minimization problem. It ensures the realization of each desired associative mapping with the best noise reduction ability in the sense of optimization. We also investigate the storage capacity of the neural network, the degree of noise reduction for a desired associative mapping, and the convergence of the learning algorithm in an analytic way. Finally, a large number of computer experimental results are presented.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Abdullah Jafari Chashmi ◽  
Vahid Rahmati ◽  
Behrouz Rezasoroush ◽  
Masumeh Motevalli Alamoti ◽  
Mohsen Askari ◽  
...  

The most valuable asset for a company is its customers’ base. As a result, customer relationship management (CRM) is an important task that drives companies. By identifying and understanding the valuable customer segments, appropriate marketing strategies can be used to enhance customer satisfaction and maintain loyalty, as well as increase company retention. Predicting customer turnover is an important tool for companies to stay competitive in a fast-growing market. In this paper, we use the recurrent nerve sketch to predict rejection based on the time series of the lifetime of the customer. In anticipation, a key aspect of identifying key triggers is to turn off. To overcome the weakness of recurrent neural networks, the research model of the combination of LRFMP with the neural network has been used. In this paper, it was found that clustering by LRFMP can be used to perform a more comprehensive analysis of customers’ turnover. In this solution, LRFMP is used to execute customer segregation. The objective is to provide a new framework for LRFMP for macrodata and macrodata analysis in order to increase the problem of business problem solving and customer depreciation. The results of the research show that the neural networks are capable of predicting the LRFMP precursors of the customers in an effective way. This model can be used in advocacy systems for advertising and loyalty programs management. In the previous research, the LRFM and RFM algorithms along with the neural network and the machine learning algorithm, etc., have been used, and in the proposed solution, the use of the LRFMP algorithm increases the accuracy of the desired.


2021 ◽  
Vol 5 (1) ◽  
pp. 9
Author(s):  
Qiang Fang ◽  
Clemente Ibarra-Castanedo ◽  
Xavier Maldague

In quality evaluation (QE) of the industrial production field, infrared thermography (IRT) is one of the most crucial techniques used for evaluating composite materials due to the properties of low cost, fast inspection of large surfaces, and safety. The application of deep neural networks tends to be a prominent direction in IRT Non-Destructive Testing (NDT). During the training of the neural network, the Achilles heel is the necessity of a large database. The collection of huge amounts of training data is the high expense task. In NDT with deep learning, synthetic data contributing to training in infrared thermography remains relatively unexplored. In this paper, synthetic data from the standard Finite Element Models are combined with experimental data to build repositories with Mask Region based Convolutional Neural Networks (Mask-RCNN) to strengthen the neural network, learning the essential features of objects of interest and achieving defect segmentation automatically. These results indicate the possibility of adapting inexpensive synthetic data merging with a certain amount of the experimental database for training the neural networks in order to achieve the compelling performance from a limited collection of the annotated experimental data of a real-world practical thermography experiment.


2004 ◽  
Vol 4 (3) ◽  
pp. 3653-3667 ◽  
Author(s):  
D. J. Lary ◽  
H. Y. Mussa

Abstract. In this study a new extended Kalman filter (EKF) learning algorithm for feed-forward neural networks (FFN) is used. With the EKF approach, the training of the FFN can be seen as state estimation for a non-linear stationary process. The EKF method gives excellent convergence performances provided that there is enough computer core memory and that the machine precision is high. Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and CH4 volume mixing ratio (v.m.r.). The neural network was able to reproduce the CH4-N2O correlation with a correlation coefficient between simulated and training values of 0.9997. The neural network Fortran code used is available for download.


2019 ◽  
Vol 15 (1) ◽  
pp. 41-54
Author(s):  
Arsentiy Igorevich Bredikhin

In this article we consider one of the most used classes of neural networks convolutional neural networks (hereinafter CNN). In particular, the areas of their application, algorithms of signal propagation by CNN and CNN training are described and the methods of CNN functioning algorithms implementation in MATLAB programming language are given. The article presents the results of research on the effectiveness of the CNN learning algorithm in solving classification problems with its help. In the course of these studies, such a characteristic of the neural network as the dynamics of the network error values depending on the learning rate is considered, and the correctness of the algorithm of learning convolutional neural network is checked. In this case, the problem of handwritten digits recognition on the MNIST sample is used as a classification task.


2020 ◽  
Vol 44 (6) ◽  
pp. 968-977
Author(s):  
M.O. Kalinina ◽  
P.L. Nikolaev

Nowadays deep neural networks play a significant part in various fields of human activity. Especially they benefit spheres dealing with large amounts of data and lengthy operations on obtaining and processing information from the visual environment. This article deals with the development of a convolutional neural network based on the YOLO architecture, intended for real-time book recognition. The creation of an original data set and the training of the deep neural network are described. The structure of the neural network obtained is presented and the most frequently used metrics for estimating the quality of the network performance are considered. A brief review of the existing types of neural network architectures is also made. YOLO architecture possesses a number of advantages that allow it to successfully compete with other models and make it the most suitable variant for creating an object detection network since it enables some of the common disadvantages of such networks to be significantly mitigated (such as recognition of similarly looking, same-color book coves or slanted books). The results obtained in the course of training the deep neural network allow us to use it as a basis for the development of the software for book spine recognition.


Sign in / Sign up

Export Citation Format

Share Document