Forecasting Rice Production in West Bengal State in India

Author(s):  
Arindam Chaudhuri

Forecasting rice production is a challenging problem in agricultural statistics. The inherent difficulty lies in demand and supply affected by many uncertain factors viz. economic policies, agricultural factors, credit measures, foreign trade etc. which interact in a complex manner. Since last few decades, Statistical techniques are used for developing predictive models to estimate required parameters. Determination of nature of rice production time series data is difficult, expensive, time consuming and involves tedious tests. In this paper, we use Interval Type Fuzzy Auto Regressive Integrated Moving Average (ITnARIMA), Adaptive Neuro Fuzzy Inference System (ANFIS) and Modified Regularized Least Squares Fuzzy Support Vector Regression (MRLSFSVR) for prediction of Productivity Index percent (PI %) of rice production time series data and compare it with traditional Statistical tool of Multiple Regression. The accuracies of ITnARIMA and ANFIS techniques are evaluated as relatively similar. It is found that ANFIS exhibits high performance than ITnARIMA, MRLSFSVR and Multiple Regression for predicting PI %. The performance comparison shows that Computational Intelligence paradigm is a promising tool for minimizing uncertainties in rice production data. Further Computational Intelligence techniques also minimize potential inconsistency of correlations.

Technologies ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 90 ◽  
Author(s):  
Ana Pano-Azucena ◽  
Esteban Tlelo-Cuautle ◽  
Sheldon Tan ◽  
Brisbane Ovilla-Martinez ◽  
Luis de la Fraga

Many biological systems and natural phenomena exhibit chaotic behaviors that are saved in time series data. This article uses time series that are generated by chaotic oscillators with different values of the maximum Lyapunov exponent (MLE) to predict their future behavior. Three prediction techniques are compared, namely: artificial neural networks (ANNs), the adaptive neuro-fuzzy inference system (ANFIS) and least-squares support vector machines (SVM). The experimental results show that ANNs provide the lowest root mean squared error. That way, we introduce a multilayer perceptron that is implemented using a field-programmable gate array (FPGA) to predict experimental chaotic time series.


2018 ◽  
Vol 2 ◽  
pp. 89-98
Author(s):  
Chuda Prasad Dhakal

Background: Fitting a multiple regression model is always challenging and the level of difficulty varies according to the purpose for which it is fitted. Two major difficulties that arise while fitting a multiple regression model for forecasting are selecting 'potential predictors' from numerous possible variables to influence on the forecast variable and investigating the most appropriate model with a subset of the potential predictors.Objective: Purpose of this paper is to demonstrate a procedure adopted while fitting multiple regression model (with an attempt to optimize) for rice production forecasting in Nepal.Materials and Methods: This study has used fifty years (1961-2010) of time series data. A list of twenty-one predictors thought to impact on rice production was scanned based upon past literature, expert's hunches, availability of the data and the researcher's insight which left eleven possible predictors. Further, these possible predictors were subjected to family of automated stepwise methods which left five ‘potential predictors’ namely harvested area, rural population, farm harvest price, male agricultural labor force and, female agricultural labor force. Afterwards, best subset regression was performed in Minitab Version 16 which finally left three 'appropriate predictors' that best fit the model namely harvested area, rural population and farm harvest price.Results: The model fit was significant with p < .001. Also, all the three predictors were found highly significant with p < 0.001. The model was parsimonious which explained 93% variation in rice production with 54% overlapping predictive work done. Forecast error was less than 5%.Conclusion: Multiple regression model can be used in rice production forecasting in the country for the enhanced ease and efficiency.Nepalese Journal of Statistics, Vol. 2, 89-98


2021 ◽  
Vol 13 (2) ◽  
pp. 542
Author(s):  
Tarate Suryakant Bajirao ◽  
Pravendra Kumar ◽  
Manish Kumar ◽  
Ahmed Elbeltagi ◽  
Alban Kuriqi

Estimating sediment flow rate from a drainage area plays an essential role in better watershed planning and management. In this study, the validity of simple and wavelet-coupled Artificial Intelligence (AI) models was analyzed for daily Suspended Sediment (SSC) estimation of highly dynamic Koyna River basin of India. Simple AI models such as the Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) were developed by supplying the original time series data as an input without pre-processing through a Wavelet (W) transform. The hybrid wavelet-coupled W-ANN and W-ANFIS models were developed by supplying the decomposed time series sub-signals using Discrete Wavelet Transform (DWT). In total, three mother wavelets, namely Haar, Daubechies, and Coiflets were employed to decompose original time series data into different multi-frequency sub-signals at an appropriate decomposition level. Quantitative and qualitative performance evaluation criteria were used to select the best model for daily SSC estimation. The reliability of the developed models was also assessed using uncertainty analysis. Finally, it was revealed that the data pre-processing using wavelet transform improves the model’s predictive efficiency and reliability significantly. In this study, it was observed that the performance of the Coiflet wavelet-coupled ANFIS model is superior to other models and can be applied for daily SSC estimation of the highly dynamic rivers. As per sensitivity analysis, previous one-day SSC (St-1) is the most crucial input variable for daily SSC estimation of the Koyna River basin.


2021 ◽  
Vol 13 (3) ◽  
pp. 67
Author(s):  
Eric Hitimana ◽  
Gaurav Bajpai ◽  
Richard Musabe ◽  
Louis Sibomana ◽  
Jayavel Kayalvizhi

Many countries worldwide face challenges in controlling building incidence prevention measures for fire disasters. The most critical issues are the localization, identification, detection of the room occupant. Internet of Things (IoT) along with machine learning proved the increase of the smartness of the building by providing real-time data acquisition using sensors and actuators for prediction mechanisms. This paper proposes the implementation of an IoT framework to capture indoor environmental parameters for occupancy multivariate time-series data. The application of the Long Short Term Memory (LSTM) Deep Learning algorithm is used to infer the knowledge of the presence of human beings. An experiment is conducted in an office room using multivariate time-series as predictors in the regression forecasting problem. The results obtained demonstrate that with the developed system it is possible to obtain, process, and store environmental information. The information collected was applied to the LSTM algorithm and compared with other machine learning algorithms. The compared algorithms are Support Vector Machine, Naïve Bayes Network, and Multilayer Perceptron Feed-Forward Network. The outcomes based on the parametric calibrations demonstrate that LSTM performs better in the context of the proposed application.


Author(s):  
Gudipally Chandrashakar

In this article, we used historical time series data up to the current day gold price. In this study of predicting gold price, we consider few correlating factors like silver price, copper price, standard, and poor’s 500 value, dollar-rupee exchange rate, Dow Jones Industrial Average Value. Considering the prices of every correlating factor and gold price data where dates ranging from 2008 January to 2021 February. Few algorithms of machine learning are used to analyze the time-series data are Random Forest Regression, Support Vector Regressor, Linear Regressor, ExtraTrees Regressor and Gradient boosting Regression. While seeing the results the Extra Tree Regressor algorithm gives the predicted value of gold prices more accurately.


2020 ◽  
Vol 23 (8) ◽  
pp. 1583-1597
Author(s):  
Vijander Singh ◽  
Ramesh Chandra Poonia ◽  
Sandeep Kumar ◽  
Pranav Dass ◽  
Pankaj Agarwal ◽  
...  

2018 ◽  
Vol 7 (3.3) ◽  
pp. 218 ◽  
Author(s):  
D Senthil ◽  
G Suseendran

Time series analysis is an important and complex problem in machine learning and statistics. In the existing system, Support Vector Machine (SVM) and Association Rule Mining (ARM) is introduced to implement the time series data. However it has issues with lower accuracy and higher time complexity. Also it has issue with optimal rules discovery and segmentation on time series data. To avoid the above mentioned issues, in the proposed research Sliding Window Technique based Improved ARM with Enhanced SVM (SWT-IARM with ESVM) is proposed. In the proposed system, the preprocessing is performed using Modified K-Means Clustering (MKMC). The indexing process is done by using R-tree which is used to provide faster results. Segmentation is performed by using SWT and it reduces the cost complexity by optimal segments. Then IARM is applied on efficient rule discovery process by generating the most frequent rules. By using ESVM classification approach, the rules are classified more accurately.  


Sign in / Sign up

Export Citation Format

Share Document