scholarly journals A Comparative Study of Deep Learning Models With Handcraft Features and Non-Handcraft Features for Automatic Plant Species Identification

Author(s):  
Shamik Tiwari

The classification of plants is one of the most important aims for botanists since plants have a significant part in the natural life cycle. In this work, a leaf-based automatic plant classification framework is investigated. The aim is to compare two different deep learning approaches named Deep Neural Network (DNN) and deep Convolutional Neural Network (CNN). In the case of deep neural network, hybrid shapes and texture features are utilized as hand-crafted features while in the case of the convolution non-handcraft, features are applied for classification. The offered frameworks are evaluated with a public leaf database. From the simulation results, it is confirmed that the deep CNN-based deep learning framework demonstrates superior classification performance than the handcraft feature based approach.

Author(s):  
Yasir Eltigani Ali Mustaf ◽  
◽  
Bashir Hassan Ismail ◽  

Diagnosis of diabetic retinopathy (DR) via images of colour fundus requires experienced clinicians to determine the presence and importance of a large number of small characteristics. This work proposes and named Adapted Stacked Auto Encoder (ASAE-DNN) a novel deep learning framework for diabetic retinopathy (DR), three hidden layers have been used to extract features and classify them then use a Softmax classification. The models proposed are checked on Messidor's data set, including 800 training images and 150 test images. Exactness, accuracy, time, recall and calculation are assessed for the outcomes of the proposed models. The results of these studies show that the model ASAE-DNN was 97% accurate.


2021 ◽  
Author(s):  
Noor Ahmad ◽  
Muhammad Aminu ◽  
Mohd Halim Mohd Noor

Deep learning approaches have attracted a lot of attention in the automatic detection of Covid-19 and transfer learning is the most common approach. However, majority of the pre-trained models are trained on color images, which can cause inefficiencies when fine-tuning the models on Covid-19 images which are often grayscale. To address this issue, we propose a deep learning architecture called CovidNet which requires a relatively smaller number of parameters. CovidNet accepts grayscale images as inputs and is suitable for training with limited training dataset. Experimental results show that CovidNet outperforms other state-of-the-art deep learning models for Covid-19 detection.


Author(s):  
Parvathi R. ◽  
Pattabiraman V.

This chapter proposes a hybrid method for classification of the objects based on deep neural network and a similarity-based search algorithm. The objects are pre-processed with external conditions. After pre-processing and training different deep learning networks with the object dataset, the authors compare the results to find the best model to improve the accuracy of the results based on the features of object images extracted from the feature vector layer of a neural network. RPFOREST (random projection forest) model is used to predict the approximate nearest images. ResNet50, InceptionV3, InceptionV4, and DenseNet169 models are trained with this dataset. A proposal for adaptive finetuning of the deep learning models by determining the number of layers required for finetuning with the help of the RPForest model is given, and this experiment is conducted using the Xception model.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Okeke Stephen ◽  
Mangal Sain ◽  
Uchenna Joseph Maduh ◽  
Do-Un Jeong

This study proposes a convolutional neural network model trained from scratch to classify and detect the presence of pneumonia from a collection of chest X-ray image samples. Unlike other methods that rely solely on transfer learning approaches or traditional handcrafted techniques to achieve a remarkable classification performance, we constructed a convolutional neural network model from scratch to extract features from a given chest X-ray image and classify it to determine if a person is infected with pneumonia. This model could help mitigate the reliability and interpretability challenges often faced when dealing with medical imagery. Unlike other deep learning classification tasks with sufficient image repository, it is difficult to obtain a large amount of pneumonia dataset for this classification task; therefore, we deployed several data augmentation algorithms to improve the validation and classification accuracy of the CNN model and achieved remarkable validation accuracy.


2021 ◽  
Author(s):  
Noor Ahmad ◽  
Muhammad Aminu ◽  
Mohd Halim Mohd Noor

Deep learning approaches have attracted a lot of attention in the automatic detection of Covid-19 and transfer learning is the most common approach. However, majority of the pre-trained models are trained on color images, which can cause inefficiencies when fine-tuning the models on Covid-19 images which are often grayscale. To address this issue, we propose a deep learning architecture called CovidNet which requires a relatively smaller number of parameters. CovidNet accepts grayscale images as inputs and is suitable for training with limited training dataset. Experimental results show that CovidNet outperforms other state-of-the-art deep learning models for Covid-19 detection.


2017 ◽  
Vol 1 (4) ◽  
pp. 271-277 ◽  
Author(s):  
Abdullah Caliskan ◽  
Mehmet Emin Yuksel

Abstract In this study, a deep neural network classifier is proposed for the classification of coronary artery disease medical data sets. The proposed classifier is tested on reference CAD data sets from the literature and also compared with popular representative classification methods regarding its classification performance. Experimental results show that the deep neural network classifier offers much better accuracy, sensitivity and specificity rates when compared with other methods. The proposed method presents itself as an easily accessible and cost-effective alternative to currently existing methods used for the diagnosis of CAD and it can be applied for easily checking whether a given subject under examination has at least one occluded coronary artery or not.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Daniel G. E. Thiem ◽  
Paul Römer ◽  
Matthias Gielisch ◽  
Bilal Al-Nawas ◽  
Martin Schlüter ◽  
...  

Abstract Background Hyperspectral imaging (HSI) is a promising non-contact approach to tissue diagnostics, generating large amounts of raw data for whose processing computer vision (i.e. deep learning) is particularly suitable. Aim of this proof of principle study was the classification of hyperspectral (HS)-reflectance values into the human-oral tissue types fat, muscle and mucosa using deep learning methods. Furthermore, the tissue-specific hyperspectral signatures collected will serve as a representative reference for the future assessment of oral pathological changes in the sense of a HS-library. Methods A total of about 316 samples of healthy human-oral fat, muscle and oral mucosa was collected from 174 different patients and imaged using a HS-camera, covering the wavelength range from 500 nm to 1000 nm. HS-raw data were further labelled and processed for tissue classification using a light-weight 6-layer deep neural network (DNN). Results The reflectance values differed significantly (p < .001) for fat, muscle and oral mucosa at almost all wavelengths, with the signature of muscle differing the most. The deep neural network distinguished tissue types with an accuracy of > 80% each. Conclusion Oral fat, muscle and mucosa can be classified sufficiently and automatically by their specific HS-signature using a deep learning approach. Early detection of premalignant-mucosal-lesions using hyperspectral imaging and deep learning is so far represented rarely in in medical and computer vision research domain but has a high potential and is part of subsequent studies.


Author(s):  
Jiexin Guo ◽  
Prahlad G. Menon

Melanoma is one of the most deadly skin cancers and amounts for ∼79% of skin cancer deaths. Early detection and timely therapeutic action can reduce mortality owing to melanoma. In this study, we demonstrate the feasibility of our in-house skin image classification framework, trained based on a library of normal as well as pathological skin images, for automatic feature extraction and detection of melanoma. The described framework begins with active contour segmentation the skin images followed by extraction of both color and texture features from the segmented image and employs a neural network classifier to for trained identification of melanoma cases. Training and testing was conducted using a 10-fold cross validation strategy and led to 88.06% ± 1.65% accuracy in classification of melanoma images.


Author(s):  
Giovanni Da Silva ◽  
Aristófanes Silva ◽  
Anselmo De Paiva ◽  
Marcelo Gattass

Lung cancer presents the highest mortality rate, besides being one of the smallest survival rates after diagnosis. Thereby, early detection is extremely important for the diagnosis and treatment. This paper proposes three different architectures of Convolutional Neural Network (CNN), which is a deep learning technique, for classification of malignancy of lung nodules without computing the morphology and texture features. The methodology was tested onto the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI), with the best accuracy of 82.3%, sensitivity of 79.4% and specificity 83.8%.


Sign in / Sign up

Export Citation Format

Share Document