scholarly journals Grand Tour Algorithm: Novel Swarm-Based Optimization for High-Dimensional Problems

Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 980
Author(s):  
Gustavo Meirelles ◽  
Bruno Brentan ◽  
Joaquín Izquierdo ◽  
Edevar Luvizotto

Agent-based algorithms, based on the collective behavior of natural social groups, exploit innate swarm intelligence to produce metaheuristic methodologies to explore optimal solutions for diverse processes in systems engineering and other sciences. Especially for complex problems, the processing time, and the chance to achieve a local optimal solution, are drawbacks of these algorithms, and to date, none has proved its superiority. In this paper, an improved swarm optimization technique, named Grand Tour Algorithm (GTA), based on the behavior of a peloton of cyclists, which embodies relevant physical concepts, is introduced and applied to fourteen benchmarking optimization problems to evaluate its performance in comparison to four other popular classical optimization metaheuristic algorithms. These problems are tackled initially, for comparison purposes, with 1000 variables. Then, they are confronted with up to 20,000 variables, a really large number, inspired in the human genome. The obtained results show that GTA clearly outperforms the other algorithms. To strengthen GTA’s value, various sensitivity analyses are performed to verify the minimal influence of the initial parameters on efficiency. It is demonstrated that the GTA fulfils the fundamental requirements of an optimization algorithm such as ease of implementation, speed of convergence, and reliability. Since optimization permeates modeling and simulation, we finally propose that GTA will be appealing for the agent-based community, and of great help for a wide variety of agent-based applications.

Author(s):  
Provas Kumar Roy

Biogeography based optimization (BBO) is an efficient and powerful stochastic search technique for solving optimization problems over continuous space. Due to excellent exploration and exploitation property, BBO has become a popular optimization technique to solve the complex multi-modal optimization problem. However, in some cases, the basic BBO algorithm shows slow convergence rate and may stick to local optimal solution. To overcome this, quasi-oppositional biogeography based-optimization (QOBBO) for optimal reactive power dispatch (ORPD) is presented in this study. In the proposed QOBBO algorithm, oppositional based learning (OBL) concept is integrated with BBO algorithm to improve the search space of the algorithm. For validation purpose, the results obtained by the proposed QOBBO approach are compared with those obtained by BBO and other algorithms available in the literature. The simulation results show that the proposed QOBBO approach outperforms the other listed algorithms.


Author(s):  
Patrick Nwafor ◽  
Kelani Bello

A Well placement is a well-known technique in the oil and gas industry for production optimization and are generally classified into local and global methods. The use of simulation software often deployed under the direct optimization technique called global method. The production optimization of L-X field which is at primary recovery stage having five producing wells was the focus of this work. The attempt was to optimize L-X field using a well placement technique.The local methods are generally very efficient and require only a few forward simulations but can get stuck in a local optimal solution. The global methods avoid this problem but require many forward simulations. With the availability of simulator software, such problem can be reduced thus using the direct optimization method. After optimization an increase in recovery factor of over 20% was achieved. The results provided an improvement when compared with other existing methods from the literatures.


Mathematics ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 12 ◽  
Author(s):  
Xiangkai Sun ◽  
Hongyong Fu ◽  
Jing Zeng

This paper deals with robust quasi approximate optimal solutions for a nonsmooth semi-infinite optimization problems with uncertainty data. By virtue of the epigraphs of the conjugates of the constraint functions, we first introduce a robust type closed convex constraint qualification. Then, by using the robust type closed convex constraint qualification and robust optimization technique, we obtain some necessary and sufficient optimality conditions for robust quasi approximate optimal solution and exact optimal solution of this nonsmooth uncertain semi-infinite optimization problem. Moreover, the obtained results in this paper are applied to a nonsmooth uncertain optimization problem with cone constraints.


2017 ◽  
Vol 8 (3) ◽  
pp. 1-23 ◽  
Author(s):  
Ghanshyam Tejani ◽  
Vimal Savsani ◽  
Vivek Patel

In this study, a modified heat transfer search (MHTS) algorithm is proposed by incorporating sub-population based simultaneous heat transfer modes viz. conduction, convection, and radiation in the basic HTS algorithm. However, the basic HTS algorithm considers only one of the modes of heat transfer for each generation. The multiple natural frequency constraints in truss optimization problems can improve the dynamic behavior of the structure and prevent undesirable vibrations. However, shape and size variables subjected to frequency constraints are difficult to handle due to the complexity of its feasible region, which is non-linear, non-convex, implicit, and often converging to the local optimal solution. The viability and effectiveness of the HTS and MHTS algorithms are investigated by six standard trusses problems. The solutions illustrate that the MHTS algorithm performs better than the HTS algorithm.


2013 ◽  
Vol 816-817 ◽  
pp. 1154-1157
Author(s):  
Xu Yin ◽  
Ai Min Ji

To solve problems that exist in optimal design such as falling into local optimal solution easily and low efficiency in collaborative optimization, a new mix strategy optimization method combined design of experiments (DOE) with gradient optimization (GO) was proposed. In order to reduce the effect on the result of optimization made by the designers decision, DOE for preliminary analysis of the function model was used, and the optimal values obtained in DOE stage was taken as the initial values of design variables in GO stage in the new optimization method. The reducer MDO problem was taken as a example to confirm the global degree, efficiency, and accuracy of the method. The results show the optimization method could not only avoid falling into local solution, but also have an obvious superiority in treating the complex collaborative optimization problems.


Algorithms ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 85 ◽  
Author(s):  
Liliya A. Demidova ◽  
Artyom V. Gorchakov

Inspired by biological systems, swarm intelligence algorithms are widely used to solve multimodal optimization problems. In this study, we consider the hybridization problem of an algorithm based on the collective behavior of fish schools. The algorithm is computationally inexpensive compared to other population-based algorithms. Accuracy of fish school search increases with the increase of predefined iteration count, but this also affects computation time required to find a suboptimal solution. We propose two hybrid approaches, intending to improve the evolutionary-inspired algorithm accuracy by using classical optimization methods, such as gradient descent and Newton’s optimization method. The study shows the effectiveness of the proposed hybrid algorithms, and the strong advantage of the hybrid algorithm based on fish school search and gradient descent. We provide a solution for the linearly inseparable exclusive disjunction problem using the developed algorithm and a perceptron with one hidden layer. To demonstrate the effectiveness of the algorithms, we visualize high dimensional loss surfaces near global extreme points. In addition, we apply the distributed version of the most effective hybrid algorithm to the hyperparameter optimization problem of a neural network.


2018 ◽  
Vol 204 ◽  
pp. 02006
Author(s):  
Khusnul Novianingsih ◽  
Rieske Hadianti

The airline crew pairing problem is one of the optimization problems which classified as a NP-hard problem. Since the number of feasible pairings in flight schedules can be numerous, the exact methods will not efficient to solve the problem. We propose a heuristic method for solving crew pairing problems. Initially, we generate a feasible solution by maximizing the covered flights. Then, we improve the solution by constructing a procedure to avoid the local optimal solution. We test our method to an airline schedules. The computational results show that our method can give the optimal solution in short period of time.


2018 ◽  
Vol 232 ◽  
pp. 03015
Author(s):  
Changjun Wen ◽  
Changlian Liu ◽  
Heng Zhang ◽  
Hongliang Wang

The particle swarm optimization (PSO) is a widely used tool for solving optimization problems in the field of engineering technology. However, PSO is likely to fall into local optimum, which has the disadvantages of slow convergence speed and low convergence precision. In view of the above shortcomings, a particle swarm optimization with Gaussian disturbance is proposed. With introducing the Gaussian disturbance in the self-cognition part and social cognition part of the algorithm, this method can improve the convergence speed and precision of the algorithm, which can also improve the ability of the algorithm to escape the local optimal solution. The algorithm is simulated by Griewank function after the several evolutionary modes of GDPSO algorithm are analyzed. The experimental results show that the convergence speed and the optimization precision of the GDPSO is better than that of PSO.


2019 ◽  
Vol 29 (07) ◽  
pp. 2050112
Author(s):  
Renuka Kamdar ◽  
Priyanka Paliwal ◽  
Yogendra Kumar

The goal to provide faster and optimal solution to complex and high-dimensional problem is pushing the technical envelope related to new algorithms. While many approaches use centralized strategies, the concept of multi-agent systems (MASS) is creating a new option related to distributed analyses for the optimization problems. A novel learning algorithm for solving the global numerical optimization problems is proposed. The proposed learning algorithm integrates the multi-agent system and the hybrid butterfly–particle swarm optimization (BFPSO) algorithm. Thus it is named as multi-agent-based BFPSO (MABFPSO). In order to obtain the optimal solution quickly, each agent competes and cooperates with its neighbors and it can also learn by using its knowledge. Making use of these agent–agent interactions and sensitivity and probability mechanism of BFPSO, MABFPSO realizes the purpose of optimizing the value of objective function. The designed MABFPSO algorithm is tested on specific benchmark functions. Simulations of the proposed algorithm have been performed for the optimization of functions of 2, 20 and 30 dimensions. The comparative simulation results with conventional PSO approaches demonstrate that the proposed algorithm is a potential candidate for optimization of both low-and high-dimensional functions. The optimization strategy is general and can be used to solve other power system optimization problems as well.


Author(s):  
Shengyu Pei

How to solve constrained optimization problems constitutes an important part of the research on optimization problems. In this paper, a hybrid immune clonal particle swarm optimization multi-objective algorithm is proposed to solve constrained optimization problems. In the proposed algorithm, the population is first initialized with the theory of good point set. Then, differential evolution is adopted to improve the local optimal solution of each particle, with immune clonal strategy incorporated to improve each particle. As a final step, sub-swarm is used to enhance the position and velocity of individual particle. The new algorithm has been tested on 24 standard test functions and three engineering optimization problems, whose results show that the new algorithm has good performance in both robustness and convergence.


Sign in / Sign up

Export Citation Format

Share Document