Bearing Fault Diagnosis Based on Labview

Author(s):  
Wan-ye Yao ◽  
Xue-Li Jiang

This function of wavelet packet decomposition and the energy of each band to strike is achieved within the Labview module. Signal energy in different frequency bands within the change reflects a change in the operating state. Extract wavelet packet energy spectrum of each band, making it as a feature vector. Finally the fault are classified by SVM. The two Parameters, the kernel function parameters g of radial machine support vector machine and penalty factor C of the radial machine support vector machine, are optimally chosen, automatically and rapidly, by using the method of particle swarm algorithm, avoiding the blindness of artificial selection parameters. The Matalab program of support vector machines based on particle swarm optimization are made into COM components. Mixed programming, Labview call COM component, generated by the M file, is implemented, which is divorced from the MATLAB environment, making it good for expanding the function of Labview. The effectiveness, wavelet packet energy spectrum - PSOSVM model of the bearing fault diagnosis, is verified.

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3422 ◽  
Author(s):  
Mien Van ◽  
Duy Tang Hoang ◽  
Hee Jun Kang

Bearing is one of the key components of a rotating machine. Hence, monitoring health condition of the bearing is of paramount importace. This paper develops a novel particle swarm optimization (PSO)-least squares wavelet support vector machine (PSO-LSWSVM) classifier, which is designed based on a combination between a PSO, a least squares procedure, and a new wavelet kernel function-based support vector machine (SVM), for bearing fault diagnosis. In this work, bearing fault classification is transformed into a pattern recognition problem, which consists of three stages of data processing. Firstly, a rich information dataset is built by extracting the features from the signals, which are decomposed by the nonlocal means (NLM) and empirical mode decomposition (EMD). Secondly, a minimum-redundancy maximum-relevance (mRMR) method is employed to determine a subset of feature that can provide an optimal performance. Thirdly, a novel classifier, namely LSWSVM, is proposed with the aid of a PSO, to provide higher classification accuracy. The key innovative science of this work is to propropose a new classifier with the aid of an new wavelet kernel type to increase the classification precision of bearing fault diagnosis. The merit features of the proposed approach are demonstrated based on a benchmark bearing dataset and a comprehensive comparison procedure.


2021 ◽  
Vol 13 (6) ◽  
pp. 168781402110284
Author(s):  
Qingfeng Zhang ◽  
Shuang Chen ◽  
Zhan Peng Fan

To improve the accuracy of fault diagnosis of bearing, the improved particle swarm optimization variational mode decomposition (VMD) and support vector machine (SVM) models are proposed. Aiming at the convergence effect of particle swarm optimization (PSO), dynamic inertia weight, and gradient information are introduced to improve PSO (IPSO). IPSO is used to optimize the optimal number of VMD modal components and the penalty factor, which is applied to the vibration signal decomposition. The fault sample set is constructed by calculating the multi-scale information entropy of each component signal obtained from the bearing vibration signals. At the same time, IPSO is used to optimize the support vector machine (IPSO-SVM), which is used to bearing fault diagnosis. The time-domain feature data set is used as the comparison data set, and the classical PSO, genetic algorithm, and cross-validation method are used as the comparison algorithm to verify the effectiveness of the method in this paper. The research results show that the optimized VMD can effectively decompose the vibration signal and can effectively highlight the fault characteristics. IPSO can increase the accuracy by 2% without adding additional costs. And the accuracy, volatility, and convergence error of IPSO are better than comparison algorithms.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
HungLinh Ao ◽  
Junsheng Cheng ◽  
Kenli Li ◽  
Tung Khac Truong

This study investigates a novel method for roller bearing fault diagnosis based on local characteristic-scale decomposition (LCD) energy entropy, together with a support vector machine designed using an Artificial Chemical Reaction Optimisation Algorithm, referred to as an ACROA-SVM. First, the original acceleration vibration signals are decomposed into intrinsic scale components (ISCs). Second, the concept of LCD energy entropy is introduced. Third, the energy features extracted from a number of ISCs that contain the most dominant fault information serve as input vectors for the support vector machine classifier. Finally, the ACROA-SVM classifier is proposed to recognize the faulty roller bearing pattern. The analysis of roller bearing signals with inner-race and outer-race faults shows that the diagnostic approach based on the ACROA-SVM and using LCD to extract the energy levels of the various frequency bands as features can identify roller bearing fault patterns accurately and effectively. The proposed method is superior to approaches based on Empirical Mode Decomposition method and requires less time.


Sign in / Sign up

Export Citation Format

Share Document