A New and Effective Method of Bearing Fault Diagnosis Using Wavelet Packet Transform Combined with Support Vector Machine

2011 ◽  
Vol 6 (11) ◽  
Author(s):  
Yun-jie Xu ◽  
Shu-dong Xiu
Author(s):  
Wan-ye Yao ◽  
Xue-Li Jiang

This function of wavelet packet decomposition and the energy of each band to strike is achieved within the Labview module. Signal energy in different frequency bands within the change reflects a change in the operating state. Extract wavelet packet energy spectrum of each band, making it as a feature vector. Finally the fault are classified by SVM. The two Parameters, the kernel function parameters g of radial machine support vector machine and penalty factor C of the radial machine support vector machine, are optimally chosen, automatically and rapidly, by using the method of particle swarm algorithm, avoiding the blindness of artificial selection parameters. The Matalab program of support vector machines based on particle swarm optimization are made into COM components. Mixed programming, Labview call COM component, generated by the M file, is implemented, which is divorced from the MATLAB environment, making it good for expanding the function of Labview. The effectiveness, wavelet packet energy spectrum - PSOSVM model of the bearing fault diagnosis, is verified.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
HungLinh Ao ◽  
Junsheng Cheng ◽  
Kenli Li ◽  
Tung Khac Truong

This study investigates a novel method for roller bearing fault diagnosis based on local characteristic-scale decomposition (LCD) energy entropy, together with a support vector machine designed using an Artificial Chemical Reaction Optimisation Algorithm, referred to as an ACROA-SVM. First, the original acceleration vibration signals are decomposed into intrinsic scale components (ISCs). Second, the concept of LCD energy entropy is introduced. Third, the energy features extracted from a number of ISCs that contain the most dominant fault information serve as input vectors for the support vector machine classifier. Finally, the ACROA-SVM classifier is proposed to recognize the faulty roller bearing pattern. The analysis of roller bearing signals with inner-race and outer-race faults shows that the diagnostic approach based on the ACROA-SVM and using LCD to extract the energy levels of the various frequency bands as features can identify roller bearing fault patterns accurately and effectively. The proposed method is superior to approaches based on Empirical Mode Decomposition method and requires less time.


Sign in / Sign up

Export Citation Format

Share Document