Performance Degradation Detection of Virtual Machines Via Passive Measurement and Machine Learning

Author(s):  
Toshiaki Hayashi ◽  
Satoru Ohta

Virtualization is commonly used for efficient operation of servers in datacenters. The autonomic management of virtual machines enhances the advantages of virtualization. Therefore, for the development of such management, it is important to establish a method to accurately detect the performance degradation in virtual machines. This paper proposes a method that detects degradation via passive measurement of traffic exchanged by virtual machines. Using passive traffic measurement is advantageous because it is robust against heavy loads, non-intrusive to the managed machines, and independent of hardware/software platforms. From the measured traffic metrics, performance state is determined by a machine learning technique that algorithmically determines the complex relationships between traffic metrics and performance degradation from training data. The feasibility and effectiveness of the proposed method are confirmed experimentally.

2020 ◽  
Vol 17 (9) ◽  
pp. 3904-3906
Author(s):  
Susmita J. A. Nair ◽  
T. R. Gopalakrishnan Nair

Increasing demand of computing resources and the popularity of cloud computing have led the organizations to establish of large-scale data centers. To handle varying workloads, allocating resources to Virtual Machines, placing the VMs in the most suitable physical machine at data centers without violating the Service Level Agreement remains a big challenge for the cloud providers. The energy consumption and performance degradation are the prime focus for the data centers in providing services by strictly following the SLA. In this paper we are suggesting a model for minimizing the energy consumption and performance degradation without violating SLA. The experiments conducted have shown a reduction in SLA violation by nearly 10%.


Author(s):  
John O’Donnell ◽  
Hwan-Sik Yoon

Abstract In recent years, there has been a growing interest in the connectivity of vehicles. This connectivity allows for the monitoring and analysis of large amount of sensor data from vehicles during their normal operations. In this paper, an approach is proposed for analyzing such data to determine a vehicle component’s remaining useful life named time-to-failure (TTF). The collected data is first used to determine the type of performance degradation and then to train a regression model to predict the health condition and performance degradation rate of the component using a machine learning algorithm. When new data is collected later for the same component in a different system, the trained model can be used to estimate the time-to-failure of the component based on the predicted health condition and performance degradation rate. To validate the proposed approach, a quarter-car model is simulated, and a machine learning algorithm is applied to determine the time-to-failure of a failing shock absorber. The results show that a tap-delayed nonlinear autoregressive network with exogenous input (NARX) can accurately predict the health condition and degradation rate of the shock absorber and can estimate the component’s time-to-failure. To the best of the authors’ knowledge, this research is the first attempt to determine a component’s time-to-failure using a machine learning algorithm.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Ali Madani ◽  
Ahmed Bakhaty ◽  
Jiwon Kim ◽  
Yara Mubarak ◽  
Mohammad R. K. Mofrad

Finite element and machine learning modeling are two predictive paradigms that have rarely been bridged. In this study, we develop a parametric model to generate arterial geometries and accumulate a database of 12,172 2D finite element simulations modeling the hyperelastic behavior and resulting stress distribution. The arterial wall composition mimics vessels in atherosclerosis–a complex cardiovascular disease and one of the leading causes of death globally. We formulate the training data to predict the maximum von Mises stress, which could indicate risk of plaque rupture. Trained deep learning models are able to accurately predict the max von Mises stress within 9.86% error on a held-out test set. The deep neural networks outperform alternative prediction models and performance scales with amount of training data. Lastly, we examine the importance of contributing features on stress value and location prediction to gain intuitions on the underlying process. Moreover, deep neural networks can capture the functional mapping described by the finite element method, which has far-reaching implications for real-time and multiscale prediction tasks in biomechanics.


2020 ◽  
Vol 17 (9) ◽  
pp. 4055-4060
Author(s):  
L. Girish ◽  
Sridhar K. N. Rao

Virtualized data centers bring lot of benefits with respect to the reducing the high usage of physical hardware. But nowadays, as the usage of cloud infrastructures are rapidly increasing in all the fields to provide proper services on demand. In cloud data center, achieving efficient resource sharing between virtual machine and physical machines are very important. To achieve efficient resource sharing performance degradation of virtual machine and quantifying the sensitivity of virtual machine must be modeled, predicted correctly. In this work we use machine learning techniques like decision tree, K nearest neighbor and logistic regression to calculate the sensitivity of virtual machine. The dataset used for the experiment was collected using collected from open stack cloud environment. We execute two scenarios in this experiment to evaluate performance of the three mentioned classifiers based on precision, recall, sensitivity and specificity. We achieved good results using decision tree classifier with precision 88.8%, recall 80% and accuracy of 97.30%.


2019 ◽  
Author(s):  
Andrew Medford ◽  
Shengchun Yang ◽  
Fuzhu Liu

Understanding the interaction of multiple types of adsorbate molecules on solid surfaces is crucial to establishing the stability of catalysts under various chemical environments. Computational studies on the high coverage and mixed coverages of reaction intermediates are still challenging, especially for transition-metal compounds. In this work, we present a framework to predict differential adsorption energies and identify low-energy structures under high- and mixed-adsorbate coverages on oxide materials. The approach uses Gaussian process machine-learning models with quantified uncertainty in conjunction with an iterative training algorithm to actively identify the training set. The framework is demonstrated for the mixed adsorption of CH<sub>x</sub>, NH<sub>x</sub> and OH<sub>x</sub> species on the oxygen vacancy and pristine rutile TiO<sub>2</sub>(110) surface sites. The results indicate that the proposed algorithm is highly efficient at identifying the most valuable training data, and is able to predict differential adsorption energies with a mean absolute error of ~0.3 eV based on <25% of the total DFT data. The algorithm is also used to identify 76% of the low-energy structures based on <30% of the total DFT data, enabling construction of surface phase diagrams that account for high and mixed coverage as a function of the chemical potential of C, H, O, and N. Furthermore, the computational scaling indicates the algorithm scales nearly linearly (N<sup>1.12</sup>) as the number of adsorbates increases. This framework can be directly extended to metals, metal oxides, and other materials, providing a practical route toward the investigation of the behavior of catalysts under high-coverage conditions.


2018 ◽  
Vol 6 (2) ◽  
pp. 283-286
Author(s):  
M. Samba Siva Rao ◽  
◽  
M.Yaswanth . ◽  
K. Raghavendra Swamy ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document