A Robust Multivariate Outlier Detection Method for Detection of Securities Fraud

2020 ◽  
Vol 7 (3) ◽  
pp. 12-29
Author(s):  
M. Fevzi Esen

Insider trading is one the most common deceptive trading practice in securities markets. Data mining appears as an effective approach to tackle the problems in fraud detection with high accuracy. In this study, the authors aim to detect outlying insider transactions depending on the variables affecting insider trading profitability. 1,241,603 sales and purchases of insiders, which range from 2010 to 2017, are analyzed by using classical and robust outlier detection methods. They computed robust distance scores based on minimum volume ellipsoid, Stahel-Donoho, and fast minimum covariance determinant estimators. To investigate the outlying observations that are likely to be fraudulent, they employ event study analysis to measure abnormal returns of outlying transactions. The results are compared to the abnormal returns of non-outlying transactions. They find that outlying transactions gain higher abnormal returns than transactions that are not flagged as outliers. Business intelligence and analytics may be a useful strategy for detecting and preventing of financial fraud for companies.

2020 ◽  
Vol 49 (2) ◽  
pp. 1-17 ◽  
Author(s):  
Kazumi Wada ◽  
Mariko Kawano ◽  
Hiroe Tsubaki

In this paper, the performance of outlier detection methods has been evaluated with symmetrically distributed datasets. We choose four estimators, viz. modified Stahel-Donoho (MSD) estimators, blocked adaptive computationally efficient outlier nominators, minimum covariance determinant estimator obtained by a fast algorithm, and nearest-neighbour variance estimator, which are known for their good performance with elliptically distributed data, for practical applications in national survey data processing. We adopt the data model of multivariate skew-t distribution, of which only the direction of the main axis is skewed and contaminated with outliers following another probability distribution for evaluation. We conducted Monte Carlo simulation under the data distribution to compare the performance of outlier detection. We also explore the applicability of the selected methods for several accounting items in small and medium enterprise survey data. Accordingly, it was found that the MSD estimators are the most suitable.


2021 ◽  
Vol 15 (4) ◽  
pp. 1-20
Author(s):  
Georg Steinbuss ◽  
Klemens Böhm

Benchmarking unsupervised outlier detection is difficult. Outliers are rare, and existing benchmark data contains outliers with various and unknown characteristics. Fully synthetic data usually consists of outliers and regular instances with clear characteristics and thus allows for a more meaningful evaluation of detection methods in principle. Nonetheless, there have only been few attempts to include synthetic data in benchmarks for outlier detection. This might be due to the imprecise notion of outliers or to the difficulty to arrive at a good coverage of different domains with synthetic data. In this work, we propose a generic process for the generation of datasets for such benchmarking. The core idea is to reconstruct regular instances from existing real-world benchmark data while generating outliers so that they exhibit insightful characteristics. We propose and describe a generic process for the benchmarking of unsupervised outlier detection, as sketched so far. We then describe three instantiations of this generic process that generate outliers with specific characteristics, like local outliers. To validate our process, we perform a benchmark with state-of-the-art detection methods and carry out experiments to study the quality of data reconstructed in this way. Next to showcasing the workflow, this confirms the usefulness of our proposed process. In particular, our process yields regular instances close to the ones from real data. Summing up, we propose and validate a new and practical process for the benchmarking of unsupervised outlier detection.


2015 ◽  
Vol 16 (1) ◽  
pp. 74-76
Author(s):  
Miriam Fisher ◽  
Brian McManus

Purpose – To explain the details and implications of a September 9, 2014 federal indictment, US v. Robert Bandfield, the first time a Foreign Account Tax Compliance Act (FATCA) violation has been charged as an “overt act” in furtherance of a tax conspiracy and securities fraud. Design/methodology/approach – Provides background, including the enactment of FATCA and the details of the indictment; describes an undercover investigation conducted by President Obama’s Financial Fraud Enforcement Task Force; and discusses the warnings this indictment sends to the global financial community. Findings – The indictment confirms the coordinated and aggressive tactics US law enforcement is now employing to investigate and prosecute offshore financial fraud. Practical implications – Banks and financial service providers need to be aware of the impact of enhanced US regulatory obligations and implement appropriate compliance measures. These institutions must also remain sensitive to risks presented by unscrupulous customers. Finally, they must be ready to manage appropriately information-gathering and investigatory inquiries originating with US authorities. Originality/value – Practical guidance from experienced tax controversy lawyers.


Significance China's securities market has grown dramatically, but the rules that underpin its functioning have failed to keep pace and have been poorly enforced because regulators and courts lacked resources and the issue was never a political priority. Insider trading, stock price manipulation and other fraud is relatively common. Impacts A wide range of sectors and institutions will need to adjust, including investors, listed firms, traders, law enforcers and courts. Foreign firms investing in China will benefit from better protection from financial fraud. China may send judges abroad to learn from other systems; Europe is a more likely destination than the United States.


Author(s):  
Fabrizio Angiulli

Data mining techniques can be grouped in four main categories: clustering, classification, dependency detection, and outlier detection. Clustering is the process of partitioning a set of objects into homogeneous groups, or clusters. Classification is the task of assigning objects to one of several predefined categories. Dependency detection searches for pairs of attribute sets which exhibit some degree of correlation in the data set at hand. The outlier detection task can be defined as follows: “Given a set of data points or objects, find the objects that are considerably dissimilar, exceptional or inconsistent with respect to the remaining data”. These exceptional objects as also referred to as outliers. Most of the early methods for outlier identification have been developed in the field of statistics (Hawkins, 1980; Barnett & Lewis, 1994). Hawkins’ definition of outlier clarifies the approach: “An outlier is an observation that deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism”. Indeed, statistical techniques assume that the given data set has a distribution model. Outliers are those points that satisfy a discordancy test, that is, that are significantly far from what would be their expected position given the hypothesized distribution. Many clustering, classification and dependency detection methods produce outliers as a by-product of their main task. For example, in classification, mislabeled objects are considered outliers and thus they are removed from the training set to improve the accuracy of the resulting classifier, while in clustering, objects that do not strongly belong to any cluster are considered outliers. Nevertheless, it must be said that searching for outliers through techniques specifically designed for tasks different from outlier detection could not be advantageous. As an example, clusters can be distorted by outliers and, thus, the quality of the outliers returned is affected by their presence. Moreover, other than returning a solution of higher quality, outlier detection algorithms can be vastly more efficient than non ad-hoc algorithms. While in many contexts outliers are considered as noise that must be eliminated, as pointed out elsewhere, “one person’s noise could be another person’s signal”, and thus outliers themselves can be of great interest. Outlier mining is used in telecom or credit card frauds to detect the atypical usage of telecom services or credit cards, in intrusion detection for detecting unauthorized accesses, in medical analysis to test abnormal reactions to new medical therapies, in marketing and customer segmentations to identify customers spending much more or much less than average customer, in surveillance systems, in data cleaning, and in many other fields.


Sign in / Sign up

Export Citation Format

Share Document