Outlier Detection Techniques for Data Mining

Author(s):  
Fabrizio Angiulli

Data mining techniques can be grouped in four main categories: clustering, classification, dependency detection, and outlier detection. Clustering is the process of partitioning a set of objects into homogeneous groups, or clusters. Classification is the task of assigning objects to one of several predefined categories. Dependency detection searches for pairs of attribute sets which exhibit some degree of correlation in the data set at hand. The outlier detection task can be defined as follows: “Given a set of data points or objects, find the objects that are considerably dissimilar, exceptional or inconsistent with respect to the remaining data”. These exceptional objects as also referred to as outliers. Most of the early methods for outlier identification have been developed in the field of statistics (Hawkins, 1980; Barnett & Lewis, 1994). Hawkins’ definition of outlier clarifies the approach: “An outlier is an observation that deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism”. Indeed, statistical techniques assume that the given data set has a distribution model. Outliers are those points that satisfy a discordancy test, that is, that are significantly far from what would be their expected position given the hypothesized distribution. Many clustering, classification and dependency detection methods produce outliers as a by-product of their main task. For example, in classification, mislabeled objects are considered outliers and thus they are removed from the training set to improve the accuracy of the resulting classifier, while in clustering, objects that do not strongly belong to any cluster are considered outliers. Nevertheless, it must be said that searching for outliers through techniques specifically designed for tasks different from outlier detection could not be advantageous. As an example, clusters can be distorted by outliers and, thus, the quality of the outliers returned is affected by their presence. Moreover, other than returning a solution of higher quality, outlier detection algorithms can be vastly more efficient than non ad-hoc algorithms. While in many contexts outliers are considered as noise that must be eliminated, as pointed out elsewhere, “one person’s noise could be another person’s signal”, and thus outliers themselves can be of great interest. Outlier mining is used in telecom or credit card frauds to detect the atypical usage of telecom services or credit cards, in intrusion detection for detecting unauthorized accesses, in medical analysis to test abnormal reactions to new medical therapies, in marketing and customer segmentations to identify customers spending much more or much less than average customer, in surveillance systems, in data cleaning, and in many other fields.

Author(s):  
Senol Emir ◽  
Hasan Dincer ◽  
Umit Hacioglu ◽  
Serhat Yuksel

In a data set, an outlier refers to a data point that is considerably different from the others. Detecting outliers provides useful application-specific insights and leads to choosing right prediction models. Outlier detection (also known as anomaly detection or novelty detection) has been studied in statistics and machine learning for a long time. It is an essential preprocessing step of data mining process. In this study, outlier detection step in the data mining process is applied for identifying the top 20 outlier firms. Three outlier detection algorithms are utilized using fundamental analysis variables of firms listed in Borsa Istanbul for the 2011-2014 period. The results of each algorithm are presented and compared. Findings show that 15 different firms are identified by three different outlier detection methods. KCHOL and SAHOL have the greatest number of appearances with 12 observations among these firms. By investigating the results, it is concluded that each of three algorithms makes different outlier firm lists due to differences in their approaches for outlier detection.


2021 ◽  
Vol 50 (1) ◽  
pp. 138-152
Author(s):  
Mujeeb Ur Rehman ◽  
Dost Muhammad Khan

Recently, anomaly detection has acquired a realistic response from data mining scientists as a graph of its reputation has increased smoothly in various practical domains like product marketing, fraud detection, medical diagnosis, fault detection and so many other fields. High dimensional data subjected to outlier detection poses exceptional challenges for data mining experts and it is because of natural problems of the curse of dimensionality and resemblance of distant and adjoining points. Traditional algorithms and techniques were experimented on full feature space regarding outlier detection. Customary methodologies concentrate largely on low dimensional data and hence show ineffectiveness while discovering anomalies in a data set comprised of a high number of dimensions. It becomes a very difficult and tiresome job to dig out anomalies present in high dimensional data set when all subsets of projections need to be explored. All data points in high dimensional data behave like similar observations because of its intrinsic feature i.e., the distance between observations approaches to zero as the number of dimensions extends towards infinity. This research work proposes a novel technique that explores deviation among all data points and embeds its findings inside well established density-based techniques. This is a state of art technique as it gives a new breadth of research towards resolving inherent problems of high dimensional data where outliers reside within clusters having different densities. A high dimensional dataset from UCI Machine Learning Repository is chosen to test the proposed technique and then its results are compared with that of density-based techniques to evaluate its efficiency.


2022 ◽  
Vol 13 (1) ◽  
pp. 1-17
Author(s):  
Ankit Kumar ◽  
Abhishek Kumar ◽  
Ali Kashif Bashir ◽  
Mamoon Rashid ◽  
V. D. Ambeth Kumar ◽  
...  

Detection of outliers or anomalies is one of the vital issues in pattern-driven data mining. Outlier detection detects the inconsistent behavior of individual objects. It is an important sector in the data mining field with several different applications such as detecting credit card fraud, hacking discovery and discovering criminal activities. It is necessary to develop tools used to uncover the critical information established in the extensive data. This paper investigated a novel method for detecting cluster outliers in a multidimensional dataset, capable of identifying the clusters and outliers for datasets containing noise. The proposed method can detect the groups and outliers left by the clustering process, like instant irregular sets of clusters (C) and outliers (O), to boost the results. The results obtained after applying the algorithm to the dataset improved in terms of several parameters. For the comparative analysis, the accurate average value and the recall value parameters are computed. The accurate average value is 74.05% of the existing COID algorithm, and our proposed algorithm has 77.21%. The average recall value is 81.19% and 89.51% of the existing and proposed algorithm, which shows that the proposed work efficiency is better than the existing COID algorithm.


Data Mining ◽  
2013 ◽  
pp. 142-158
Author(s):  
Baoying Wang ◽  
Aijuan Dong

Clustering and outlier detection are important data mining areas. Online clustering and outlier detection generally work with continuous data streams generated at a rapid rate and have many practical applications, such as network instruction detection and online fraud detection. This chapter first reviews related background of online clustering and outlier detection. Then, an incremental clustering and outlier detection method for market-basket data is proposed and presented in details. This proposed method consists of two phases: weighted affinity measure clustering (WC clustering) and outlier detection. Specifically, given a data set, the WC clustering phase analyzes the data set and groups data items into clusters. Then, outlier detection phase examines each newly arrived transaction against the item clusters formed in WC clustering phase, and determines whether the new transaction is an outlier. Periodically, the newly collected transactions are analyzed using WC clustering to produce an updated set of clusters, against which transactions arrived afterwards are examined. The process is carried out continuously and incrementally. Finally, the future research trends on online data mining are explored at the end of the chapter.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Massimiliano Zanin ◽  
Miguel Romance ◽  
Santiago Moral ◽  
Regino Criado

The detection of frauds in credit card transactions is a major topic in financial research, of profound economic implications. While this has hitherto been tackled through data analysis techniques, the resemblances between this and other problems, like the design of recommendation systems and of diagnostic/prognostic medical tools, suggest that a complex network approach may yield important benefits. In this paper we present a first hybrid data mining/complex network classification algorithm, able to detect illegal instances in a real card transaction data set. It is based on a recently proposed network reconstruction algorithm that allows creating representations of the deviation of one instance from a reference group. We show how the inclusion of features extracted from the network data representation improves the score obtained by a standard, neural network-based classification algorithm and additionally how this combined approach can outperform a commercial fraud detection system in specific operation niches. Beyond these specific results, this contribution represents a new example on how complex networks and data mining can be integrated as complementary tools, with the former providing a view to data beyond the capabilities of the latter.


2012 ◽  
Vol 6-7 ◽  
pp. 621-624
Author(s):  
Hong Bin Fang

Outlier detection is an important field of data mining, which is widely used in credit card fraud detection, network intrusion detection ,etc. A kind of high dimensional data similarity metric function and the concept of class density are given in the paper, basing on the combination of hierarchical clustering and similarity, as well as outlier detection algorithm about similarity measurement is presented after the redefinition of high dimension density outliers is put. The algorithm has some value for outliers detection of high dimensional data set in view of experimental result.


2014 ◽  
Vol 635-637 ◽  
pp. 1723-1728
Author(s):  
Shi Bo Zhou ◽  
Wei Xiang Xu

Local outliers detection is an important issue in data mining. By analyzing the limitations of the existing outlier detection algorthms, a local outlier detection algorthm based on coefficient of variation is introduced. This algorthms applies K-means which is strong in outliers searching, divides data set into sections, puts outliers and their nearing clusters into a local neighbourhood, then figures out the local deviation factor of each local neighbourhood by coefficient of variation, as a result, local outliers can more likely be found.The heoretic analysis and experimental results indicate that the method is ef fective and efficient.


2021 ◽  
Author(s):  
Peng Ni ◽  
Haili Jiang ◽  
Wurong Fu ◽  
Ye Xia ◽  
Limin Sun

<p>As the demand for the detections of outliers in the structural health monitoring data-set increases, numerous approaches are presented for it. However, the characteristics of the existing methods dealing with different kinds of measured data are not yet clear enough for practical use. Therefore, this paper conducts a comparative study of several popular rule-based methods based on monitoring data of an arch-tied bridge in China. For measured data, outliers are not known in advance. In this way, this study evaluates and compares the detection performances rely on two indicators: the quantity of the detected outliers and the extreme value of the outliers deviating from the mean of the data. Conclusions on the features and applicable situations of involved methods are given. Additionally, combining the results of different methods proves to be beneficial. Finally, a software incorporating the research results is developed for outlier detection.</p>


Author(s):  
A. Bhushan ◽  
M. H. Sharker ◽  
H. A. Karimi

In this paper, we address outliers in spatiotemporal data streams obtained from sensors placed across geographically distributed locations. Outliers may appear in such sensor data due to various reasons such as instrumental error and environmental change. Real-time detection of these outliers is essential to prevent propagation of errors in subsequent analyses and results. Incremental Principal Component Analysis (IPCA) is one possible approach for detecting outliers in such type of spatiotemporal data streams. IPCA has been widely used in many real-time applications such as credit card fraud detection, pattern recognition, and image analysis. However, the suitability of applying IPCA for outlier detection in spatiotemporal data streams is unknown and needs to be investigated. To fill this research gap, this paper contributes by presenting two new IPCA-based outlier detection methods and performing a comparative analysis with the existing IPCA-based outlier detection methods to assess their suitability for spatiotemporal sensor data streams.


In today's economy, credit card (CC) plays a major role. It is an inevitable part of a household, business & global business. While using CCs can offer huge advantages if used cautiously and safely, significant credit & financial damage can be incurred by fraudulent activity. Several methods to deal with the rising credit card fraud (CCF) have been suggested. Both such strategies, though, are meant to prevent CCFs; each of them has its own drawbacks, benefits, and functions. CCF has become a significant global concern because of the huge growth of e-commerce and the proliferation of payment online. Machine learning (ML) algo as a data mining technology (DM) was recently very involved in the detection of CCF. There are however several challenges, including the absence of publicly available data sets, high unbalanced size, and different confusing behavior. In this paper, we discuss the state of the art in credit card fraud detection (CCFD), dataset and assessment standards after analyzing issues with the CCFD. Dataset is publicly available in the CCFD data set used in experiments. Here, we compare two ML algos of performance: Logistic Regression (LR) and XGBoost in detecting CCF Transactions Real Life Data. XGBoosthas an inherent ability to handle missing values. When XGBoost encounters node at lost value, it tries to split left & right hands & learn all ways to the highest loss. This is when the test runs on the data. The experimental results show an effective use of the XGBoost classifier. Technique of performance is widely accepted metric based on exclusion: accuracy & recall. Also, the comparison between both approaches displayed based on the ROC curve


Sign in / Sign up

Export Citation Format

Share Document