Indoor Localization Using the Reference Tags and Phase of Passive UHF-RFID Tags

Author(s):  
He Xu ◽  
Ye Ding ◽  
Peng Li ◽  
Ruchuan Wang

In recent years, indoor position has been an important role in many applications, such as production management, store management and shelves in supermarket or library. Much time and energy are exhausted because one object cannot be quickly and accurately located. Traditional indoor position systems have some problems, such as complicated software and hardware system, inaccurate position and high time complexity. In this paper, the authors propose an RFID-based collaborative information system, Tagrom, for indoor localization using COTS RFID readers and tags. Unlike former methods, Tagrom works with reference tags and phase of Passive UHF-RFID tags, which improves traditional distribution of reference tags and utilize RF phase replace of traditional RSSI or multipath profile to determine the position of target RFID tags.

2013 ◽  
Vol 5 (5) ◽  
pp. 645-651 ◽  
Author(s):  
Y. Duroc ◽  
G. Andia Vera ◽  
J. P. Garcia Martin

This paper presents a new approach for improving the localization of passive ultra high frequency radio frequency identification (RFID) tags in line-of-sight channels using a received signal strength indicator (RSSI) technique. In practice, the complex propagation in the indoor channels and also the variability of some parameters of the RFID equipment itself introduces significant amount of errors when the operation of localization carries out the RSSI technique. Indeed, as the calculation is based on a trilateration, the incomplete knowledge of the propagation and some parameters of RFID tags leads to estimate distances which are wrong, and therefore the localization cannot be correct. In order to overcome this drawback, the proposed method takes into account the presence of unknown parameters relying on a dichotomous algorithm which includes probabilistic parameters. The presented simulation results are in good agreement with the expected theoretical results. Experimental results show that the proposed method strongly increases the accuracy of the estimated position of tags. Compared to other approaches based on the improvement of the RSSI technique, this method does not require too much complexity in terms of materials (no need for specific architecture or reference tags) and processing (fast and simple algorithm).


2013 ◽  
Vol 61 (12) ◽  
pp. 4724-4729 ◽  
Author(s):  
Martin Scherhaufl ◽  
Markus Pichler ◽  
Erwin Schimback ◽  
Dominikus J. Muller ◽  
Andreas Ziroff ◽  
...  

2017 ◽  
Vol 17 (1) ◽  
pp. 185-193 ◽  
Author(s):  
Yang Zhao ◽  
Kaihua Liu ◽  
Yongtao Ma ◽  
Zheng Gao ◽  
Yangguang Zang ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Han He ◽  
Mitra Akbari ◽  
Lauri Sydänheimo ◽  
Leena Ukkonen ◽  
Johanna Virkki

We present the possibilities of 3D direct-write dispensing in the fabrication of passive UHF RFID graphene tags on a textile substrate. In our method, the graphene tag antenna is deposited directly on top of the IC strap, in order to simplify the manufacturing process by removing one step, that is, the IC attachment with conductive glue. Our wireless measurement results confirm that graphene RFID tags with printed antenna-IC interconnections achieve peak read ranges of 5.2 meters, which makes them comparable to graphene tags with epoxy-glued ICs. After keeping the tags in high humidity, the read ranges of the tags with epoxy-glued and printed antenna-IC interconnections decrease 0.8 meters and 0.5 meters, respectively. However, after drying, the performance of both types of tags returns back to normal.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Han He ◽  
Lauri Sydänheimo ◽  
Johanna Virkki ◽  
Leena Ukkonen

We present the possibilities and challenges of passive UHF RFID tag antennas manufactured by inkjet printing silver nanoparticle ink on versatile paper-based substrates. The most efficient manufacturing parameters, such as the pattern resolution, were determined and the optimal number of printed layers was evaluated for each substrate material. Next, inkjet-printed passive UHF RFID tags were fabricated on each substrate with the optimized parameters and number of layers. According to our measurements, the tags on different paper substrates showed peak read ranges of 4–6.5 meters and the tags on different cardboard substrates exhibited peak read ranges of 2–6 meters. Based on their wireless performance, these inkjet-printed paper-based passive UHF RFID tags are sufficient for many future wireless applications and comparable to tags fabricated on more traditional substrates, such as polyimide.


RFID is a short distance communication system which comprises of a RFID tag, a RFID reader and a personal computer with desired software that can maintain the related information. These RFID tags can be of active or passive types. This paper focuses on design, simulation and fabrication of passive ultra-high frequency RFID tag (microchip and an antenna) which resonates at the frequency 866 MHz in the Industrial Scientific Medical Band. The nested H-slot inverted-F microstrip antenna structure is used for the design of passive RFID tag. It examines the specific tag geometry and its characteristics to optimize the PIFA antenna and in turn RFID tag’s performance.


Sign in / Sign up

Export Citation Format

Share Document