scholarly journals S-Box Construction Method Based on the Combination of Quantum Chaos and PWLCM Chaotic Map

Author(s):  
Jun Peng ◽  
Shangzhu Jin ◽  
Shaoning Pang ◽  
Du Zhang ◽  
Lixiao Feng ◽  
...  

For a security system built on symmetric-key cryptography algorithms, the substitution box (S-box) plays a crucial role to resist cryptanalysis. In this article, we incorporate quantum chaos and PWLCM chaotic map into a new method of S-box design. The secret key is transformed to generate a six tuple system parameter, which is involved in the generation process of chaotic sequences of two chaotic systems. The output of one chaotic system will disturb the parameters of another chaotic system in order to improve the complexity of encryption sequence. S-box is obtained by XOR operation of the output of two chaotic systems. Over the obtained 500 key-dependent S-boxes, we test the S-box cryptographical properties on bijection, nonlinearity, SAC, BIC, differential approximation probability, respectively. Performance comparison of proposed S-box with those chaos-based one in the literature has been made. The results show that the cryptographic characteristics of proposed S-box has met our design objectives and can be applied to data encryption, user authentication and system access control.

For a security system built on symmetric-key cryptography algorithms, the substitution box (S-box) plays a crucial role to resist cryptanalysis. In this article, we incorporate quantum chaos and PWLCM chaotic map into a new method of S-box design. The secret key is transformed to generate a six tuple system parameter, which is involved in the generation process of chaotic sequences of two chaotic systems. The output of one chaotic system will disturb the parameters of another chaotic system in order to improve the complexity of encryption sequence. S-box is obtained by XOR operation of the output of two chaotic systems. Over the obtained 500 key-dependent S-boxes, we test the S-box cryptographical properties on bijection, nonlinearity, SAC, BIC, differential approximation probability, respectively. Performance comparison of proposed S-box with those chaos-based one in the literature has been made. The results show that the cryptographic characteristics of proposed S-box has met our design objectives and can be applied to data encryption, user authentication and system access control.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Roman Senkerik ◽  
Ivan Zelinka ◽  
Michal Pluhacek ◽  
Donald Davendra ◽  
Zuzana Oplatková Kominkova

Evolutionary technique differential evolution (DE) is used for the evolutionary tuning of controller parameters for the stabilization of set of different chaotic systems. The novelty of the approach is that the selected controlled discrete dissipative chaotic system is used also as the chaotic pseudorandom number generator to drive the mutation and crossover process in the DE. The idea was to utilize the hidden chaotic dynamics in pseudorandom sequences given by chaotic map to help differential evolution algorithm search for the best controller settings for the very same chaotic system. The optimizations were performed for three different chaotic systems, two types of case studies and developed cost functions.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 351 ◽  
Author(s):  
Iqtadar Hussain ◽  
Amir Anees ◽  
Temadher Al-Maadeed ◽  
Muhammad Mustafa

The Advanced Encryption Standard (AES) is widely used in different kinds of security applications. The substitution box (S-box) is the main component of many modern symmetric encryption ciphers that provides confusion between the secret key and ciphertext. The S-box component that is used in AES is fixed. If we construct this component dynamically, the encryption strength of AES would be greater than before. In this manuscript, we used chaotic logistic map, Mobius transformation and symmetric group S 256 to construct S-box for AES. The idea behind the proposed work is to make supplementary safe S-box. The presented S-box is analyzed for the following analyses: linear approximation probability (LP), nonlinearity (NL), differential approximation probability (DP), strict avalanche criterion (SAC), and bit independence criterion (BIC). The analyses show that the proposed technique is useful in generating high resistance S-box to known attacks.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1392
Author(s):  
Ahmed A. Abd El-Latif ◽  
Bassem Abd-El-Atty ◽  
Akram Belazi ◽  
Abdullah M. Iliyasu

Chaotic systems are vital in designing contemporary cryptographic systems. This study proposes an innovative method for constructing an effective substitution box using a 3-dimensional chaotic map. Moreover, bouyed by the efficiency of the proposed chaos-based substitution boxes’ effectiveness, we introduce a new chaos-based image cryptosystem that combines the adeptness of Gray codes, a non-linear and sensitive hyper-chaotic system, and the proposed S-box. The generated secret key emanating from the cryptosystem is correlated to the input image to produce a unique key for each image. Extensive experimental outcomes demonstrate the utility, effectiveness, and high performance of the resulting cryptosystem.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yongli Tang ◽  
Mingjie Zhao ◽  
Lixiang Li

The rapid development of the Internet leads to a surge in the amount of information transmission and brings many security problems. For multimedia information transmission, especially digital images, it is necessary to compress and encrypt at the same time. The emergence of compressive sensing solves this problem. Compressive sensing can compress and encrypt at the same time, which can not only reduce the transmission bandwidth of the network but also improve the security of the system. However, when using compressive sensing encryption, the whole measurement matrix needs to be stored, and the compressive sensing can be combined with a chaotic system, so only the generation parameters of the matrix need to be stored, and the security of the system can be further improved by using the sensitivity of the chaotic system. This paper introduces a secure and efficient image compression-encryption scheme using a new chaotic structure and compressive sensing. The chaotic map used in the scheme is generated by our new and universal chaotic structure, which not only expands the chaotic range of the chaotic system but also improves the performance of the chaotic system. After analyzing the performance comparison of traditional one-dimensional chaotic maps and some existing methods, the image compression-encryption scheme based on a new chaotic structure and compressive sensing has a good encryption effect and large keyspace, which can resist brute force attack and statistical attack.


2008 ◽  
Vol 22 (07) ◽  
pp. 901-908 ◽  
Author(s):  
XINGYUAN WANG ◽  
CHAOFENG DUAN ◽  
NINI GU

This paper analyzes the encryption and weaknesses of E. Álvarez cryptography. On the basis of this, a new chaotic cryptography based on ergodicity is presented. The control parameter and the initial condition of the chaotic system are chosen as a secret key. A bit chain is generated by iterating the chaotic map, and the location where a plaintext grouping appears in the chain is found. We then write down the number of iterations of the chaotic map as the ciphertext grouping. Several weaknesses of the E. Álvarez cryptography are avoided in the new scheme, and the security of the new scheme is improved. In the end, the new cryptography is studied experimentally using the Logistic map, where the new cryptography's confusion and diffusion is validated, and its effectiveness is also illuminated.


2019 ◽  
Vol 1 (3) ◽  
pp. 17-30
Author(s):  
Hamsa A. Abdullah ◽  
Hikmat N. Abdullah

Due to characteristic of chaotic systems in terms of nonlinearity, sensitivity to initial values, and non-periodicity, they are used in many applications like security and multiuser transmission. Nahrain chaotic map is an example of such systems that are recently proposed with excellent features for the use in multimedia security applications. Although the implementation of chaotic systems is easy using low costanalogue ICs, this approach does not provide the flexibility that the reconfigurable analogue devices have in design possibilities such as reducing the complexity of design, real-time modification, software control and adjustment within the system. This paper presents a description of data modulation and demodulation based on Nahrain chaotic system and there hardware implementation using field programmable analogue array (FPAA) device. AN231E04 dpASP board is used as a target device for the implementation. The simulation results of system closely matched the programmable hardware testing results.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 291
Author(s):  
Chunyang Sun ◽  
Erfu Wang ◽  
Bing Zhao

Digital images can be large in size and contain sensitive information that needs protection. Compression using compressed sensing performs well, but the measurement matrix directly affects the signal compression and reconstruction performance. The good cryptographic characteristics of chaotic systems mean that using one to construct the measurement matrix has obvious advantages. However, existing low-dimensional chaotic systems have low complexity and generate sequences with poor randomness. Hence, a new six-dimensional non-degenerate discrete hyperchaotic system with six positive Lyapunov exponents is proposed in this paper. Using this chaotic system to design the measurement matrix can improve the performance of image compression and reconstruction. Because image encryption using compressed sensing cannot resist known- and chosen-plaintext attacks, the chaotic system proposed in this paper is introduced into the compressed sensing encryption framework. A scrambling algorithm and two-way diffusion algorithm for the plaintext are used to encrypt the measured value matrix. The security of the encryption system is further improved by generating the SHA-256 value of the original image to calculate the initial conditions of the chaotic map. A simulation and performance analysis shows that the proposed image compression-encryption scheme has high compression and reconstruction performance and the ability to resist known- and chosen-plaintext attacks.


Author(s):  
Ashwaq T. Hashim ◽  
Bahaa D. Jalil

In order to protect valuable data from undesirable readers or against illegal reproduction and modifications, there have been various data encryption techniques. Many methods are developed to perform image encryption. The use of chaotic map for image encryption is very effective, since it increase the security, due to its random behavior. The most attractive feature of deterministic chaotic systems is he extremely unexpected and random-look nature of chaotic signals that may lead to novel applications. A novel image encryption algorithm based on compression and hyper chaotic map techniques is proposed. Firstly the image is decomposed into three subbands R, G, and B then each band is compressed using lossless technique. The generated chaotic sequences from the 3D chaotic system are employed to code the compressed results by employing the idea of chaotic shift encoding (CSK) modulation to encode the three bands to generate the encrypted image. The experiments show that the proposed method give good results in term of security, feasibility, and robustness.


Author(s):  
DHANYA B. NAIR ◽  
RUKSANA MAIDEEN

In order to protect valuable data from undesirable readers or against illegal reproduction and modifications, there have been various data encryption techniques. Many methods have been developed to perform image encryption. The use of chaotic map for image encryption is very effective, since it increase the security, due to its random behavior. The highly unpredictable and random-look nature of chaotic signals is the most attractive feature of deterministic chaotic systems that may lead to novel (engineering) applications. This paper introduces a new cascaded structure of chaotic encryption scheme with RC-5 algorithm. In this paper „Triple key‟ is used to encrypt and decrypt the data. Three different parameters which are decided by user are used to scramble the image data and so hackers get many difficulties to hack the data hence providing more security. Cascading RC-5 with triple key chaotic image encryption increases the security and the histogram can be made more uniform. For simulation MATLAB software is used. The experimental results shows that algorithm successfully perform the cryptography and highly sensitive to the small changes in key parameters.


Sign in / Sign up

Export Citation Format

Share Document