Both Hands’ Fingers’ Angle Calculation from Live Video

Author(s):  
Ankit Chaudhary ◽  
Jagdish L. Raheja ◽  
Karen Das ◽  
Shekhar Raheja

In the last few years gesture recognition and gesture-based human computer interaction has gained a significant amount of popularity amongst researchers all over the world. It has a number of applications ranging from security to entertainment. Gesture recognition is a form of biometric identification that relies on the data acquired from the gesture depicted by an individual. This data, which can be either two-dimensional or three-dimensional, is compared against a database of individuals or is compared with respective thresholds based on the way of solving the riddle. In this paper, a novel method for angle calculation of both hands’ bended fingers is discussed and its application to a robotic hand control is presented. For the first time, such a study has been conducted in the area of natural computing for calculating angles without using any wired equipment, colors, marker or any device. The system deploys a simple camera and captures images. The pre-processing and segmentation of the region of interest is performed in a HSV color space and a binary format respectively. The technique presented in this paper requires no training for the user to perform the task.

Author(s):  
Ankit Chaudhary ◽  
Jagdish Lal Raheja ◽  
Karen Das ◽  
Shekhar Raheja

In the current age, use of natural communication in human-computer interaction is a known and well-installed thought. Hand gesture recognition and gesture-based applications have gained a significant amount of popularity amongst people all over the world. They have a number of applications ranging from security to entertainment. These applications generally are real time applications and need fast, accurate communication with machines. On the other end, gesture-based communications have few limitations, but bent finger information is not provided in vision-based techniques. In this chapter, a novel method for fingertip detection and for angle calculation of both hands' bent fingers is discussed. Angle calculation has been done before with sensor-based gloves/devices. This study has been conducted in the context of natural computing for calculating angles without using any wired equipment, colors, marker, or any device. The pre-processing and segmentation of the region of interest is performed in a HSV color space and a binary format, respectively. Fingertips are detected using level-set method and angles are calculated using geometrical analysis. This technique requires no training for the system to perform the task.


2011 ◽  
Vol 31 (7) ◽  
pp. 1623-1636 ◽  
Author(s):  
Eugene Kim ◽  
Jiangyang Zhang ◽  
Karen Hong ◽  
Nicole E Benoit ◽  
Arvind P Pathak

Abnormal vascular phenotypes have been implicated in neuropathologies ranging from Alzheimer's disease to brain tumors. The development of transgenic mouse models of such diseases has created a crucial need for characterizing the murine neurovasculature. Although histologic techniques are excellent for imaging the microvasculature at submicron resolutions, they offer only limited coverage. It is also challenging to reconstruct the three-dimensional (3D) vasculature and other structures, such as white matter tracts, after tissue sectioning. Here, we describe a novel method for 3D whole-brain mapping of the murine vasculature using magnetic resonance microscopy (μMRI), and its application to a preclinical brain tumor model. The 3D vascular architecture was characterized by six morphologic parameters: vessel length, vessel radius, microvessel density, length per unit volume, fractional blood volume, and tortuosity. Region-of-interest analysis showed significant differences in the vascular phenotype between the tumor and the contralateral brain, as well as between postinoculation day 12 and day 17 tumors. These results unequivocally show the feasibility of using μMRI to characterize the vascular phenotype of brain tumors. Finally, we show that combining these vascular data with coregistered images acquired with diffusion-weighted MRI provides a new tool for investigating the relationship between angiogenesis and concomitant changes in the brain tumor microenvironment.


2020 ◽  
Vol 12 (2) ◽  
pp. 72-79
Author(s):  
Ismawan Noor Ikhsan ◽  
Son Ali Akbar

Hexacopter belongs to one of flying robots that is used to carry out a special mission such as retrieving and delivering survival kits object. Thus, it should be built by smart system to determine the object accurately. However, there was an interference from other object that made it difficult to recognize the survival kits object. Therefore, the development of machine vision with the integration of the hexacopter control system is expected to improve the object recognition process. This study intends to develop a survival kit detection using the image processing method, which involved 1) segmentation on the Hue, Saturation, Value (HSV) color space, 2) contour detection, and 3) Region of Interest (ROI) selected detection. The evaluation of the segmentation method performances was done through the three-part experiments (i.e., the similar shape, variety of a color object, and an object shape). The result of survival kits object detection evaluation obtained an accuracy of 90.33%, precision of 99.63%, and recall of 91.24%. According to the performances obtained in this study, the development of machine vision systems on Unmanned Aerial Vehicle (UAV) has a high accuracy for the object survival kits detection even with another object interference.


2014 ◽  
Vol 556-562 ◽  
pp. 2825-2828
Author(s):  
Bo Liu ◽  
Chi Man Pun

As the great development of digital photography and relevant post-processing technology, digital image forgery becomes easily in terms of operating thus may be improperly utilized in news photography in which any forgery is strictly prohibited or the other scenario, for instance, as an evidence in the court. Therefore, digital image forgery detection technique is needed. In this paper, attention has been focused on copy-move forgery that one region is copied and then pasted onto other zones to create duplication or cover something in an image. A novel method based on HSV color space feature is proposed and experimental result will be given and it shows the effectiveness and accurateness of proposed methodology.


Author(s):  
Peng Cao ◽  
Qijie Zhao ◽  
Dawei Tu ◽  
Hui Shao
Keyword(s):  

2010 ◽  
Vol 7 (7) ◽  
pp. 1-4
Author(s):  
Jyh-Yeong Chang ◽  
Jia-Jye Shyu ◽  
Yi-Cheng Luo
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kiyoshi Masuyama ◽  
Tomoaki Higo ◽  
Jong-Kook Lee ◽  
Ryohei Matsuura ◽  
Ian Jones ◽  
...  

AbstractIn contrast to hypertrophic cardiomyopathy, there has been reported no specific pattern of cardiomyocyte array in dilated cardiomyopathy (DCM), partially because lack of alignment assessment in a three-dimensional (3D) manner. Here we have established a novel method to evaluate cardiomyocyte alignment in 3D using intravital heart imaging and demonstrated homogeneous alignment in DCM mice. Whilst cardiomyocytes of control mice changed their alignment by every layer in 3D and position twistedly even in a single layer, termed myocyte twist, cardiomyocytes of DCM mice aligned homogeneously both in two-dimensional (2D) and in 3D and lost myocyte twist. Manipulation of cultured cardiomyocyte toward homogeneously aligned increased their contractility, suggesting that homogeneous alignment in DCM mice is due to a sort of alignment remodelling as a way to compensate cardiac dysfunction. Our findings provide the first intravital evidence of cardiomyocyte alignment and will bring new insights into understanding the mechanism of heart failure.


2021 ◽  
Vol 13 (12) ◽  
pp. 2328
Author(s):  
Yameng Hong ◽  
Chengcai Leng ◽  
Xinyue Zhang ◽  
Zhao Pei ◽  
Irene Cheng ◽  
...  

Image registration has always been an important research topic. This paper proposes a novel method of constructing descriptors called the histogram of oriented local binary pattern descriptor (HOLBP) for fast and robust matching. There are three new components in our algorithm. First, we redefined the gradient and angle calculation template to make it more sensitive to edge information. Second, we proposed a new construction method of the HOLBP descriptor and improved the traditional local binary pattern (LBP) computation template. Third, the principle of uniform rotation-invariant LBP was applied to add 10-dimensional gradient direction information to form a 138-dimension HOLBP descriptor vector. The experimental results showed that our method is very stable in terms of accuracy and computational time for different test images.


Sign in / Sign up

Export Citation Format

Share Document