scholarly journals An Iterative Method for 3D Body Registration Using a Single RGB-D Sensor

Author(s):  
Victor Villena-Martinez ◽  
Andres Fuster-Guillo ◽  
Marcelo Saval-Calvo ◽  
Jorge Azorin-Lopez

In this paper, the problem of 3D body registration using a single RGB-D sensor is approached. It has been guided by three main requirements: low-cost, unconstrained movement and accuracy. In order to fit them, an iterative registration method for accurately aligning data from single RGB-D sensor is proposed. The data is acquired while a person rotates in front of the camera, without the need of any external marker or constraint about its pose. The articulated alignment is carried out in a model-free approach in order to be more consistent with the real data. The iterative method is divided in stages, contributing to each other by the refinement of a specific part of the acquired data. The exploratory results validate the proposed method that is able to feed on itself in each iteration improving the final result by a progressive iteration, with the required precision under the conditions of affordability and unconstrained movement acquisition.

Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 107 ◽  
Author(s):  
Victor Vaquero ◽  
Ely Repiso ◽  
Alberto Sanfeliu

Detecting and tracking moving objects (DATMO) is an essential component for autonomous driving and transportation. In this paper, we present a computationally low-cost and robust DATMO system which uses as input only 2D laser rangefinder (LRF) information. Due to its low requirements both in sensor needs and computation, our DATMO algorithm is meant to be used in current Autonomous Guided Vehicles (AGVs) to improve their reliability for the cargo transportation tasks at port terminals, advancing towards the next generation of fully autonomous transportation vehicles. Our method follows a Detection plus Tracking paradigm. In the detection step we exploit the minimum information of 2D-LRFs by segmenting the elements of the scene in a model-free way and performing a fast object matching to pair segmented elements from two different scans. In this way, we easily recognize dynamic objects and thus reduce consistently by between two and five times the computational burden of the adjacent tracking method. We track the final dynamic objects with an improved Multiple-Hypothesis Tracking (MHT), to which special functions for filtering, confirming, holding, and deleting targets have been included. The full system is evaluated in simulated and real scenarios producing solid results. Specifically, a simulated port environment has been developed to gather realistic data of common autonomous transportation situations such as observing an intersection, joining vehicle platoons, and perceiving overtaking maneuvers. We use different sensor configurations to demonstrate the robustness and adaptability of our approach. We additionally evaluate our system with real data collected in a port terminal the Netherlands. We show that it is able to accomplish the vehicle following task successfully, obtaining a total system recall of more than 98% while running faster than 30 Hz.


2021 ◽  
Vol 40 (3) ◽  
pp. 1-12
Author(s):  
Hao Zhang ◽  
Yuxiao Zhou ◽  
Yifei Tian ◽  
Jun-Hai Yong ◽  
Feng Xu

Reconstructing hand-object interactions is a challenging task due to strong occlusions and complex motions. This article proposes a real-time system that uses a single depth stream to simultaneously reconstruct hand poses, object shape, and rigid/non-rigid motions. To achieve this, we first train a joint learning network to segment the hand and object in a depth image, and to predict the 3D keypoints of the hand. With most layers shared by the two tasks, computation cost is saved for the real-time performance. A hybrid dataset is constructed here to train the network with real data (to learn real-world distributions) and synthetic data (to cover variations of objects, motions, and viewpoints). Next, the depth of the two targets and the keypoints are used in a uniform optimization to reconstruct the interacting motions. Benefitting from a novel tangential contact constraint, the system not only solves the remaining ambiguities but also keeps the real-time performance. Experiments show that our system handles different hand and object shapes, various interactive motions, and moving cameras.


Author(s):  
Saptarshi Chatterjee ◽  
Shrabanti Chowdhury ◽  
Sanjib Basu

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Weiqiu Pan ◽  
Tianzeng Li ◽  
Safdar Ali

AbstractThe Ebola outbreak in 2014 caused many infections and deaths. Some literature works have proposed some models to study Ebola virus, such as SIR, SIS, SEIR, etc. It is proved that the fractional order model can describe epidemic dynamics better than the integer order model. In this paper, we propose a fractional order Ebola system and analyze the nonnegative solution, the basic reproduction number $R_{0}$ R 0 , and the stabilities of equilibrium points for the system firstly. In many studies, the numerical solutions of some models cannot fit very well with the real data. Thus, to show the dynamics of the Ebola epidemic, the Gorenflo–Mainardi–Moretti–Paradisi scheme (GMMP) is taken to get the numerical solution of the SEIR fractional order Ebola system and the modified grid approximation method (MGAM) is used to acquire the parameters of the SEIR fractional order Ebola system. We consider that the GMMP method may lead to absurd numerical solutions, so its stability and convergence are given. Then, the new fractional orders, parameters, and the root-mean-square relative error $g(U^{*})=0.4146$ g ( U ∗ ) = 0.4146 are obtained. With the new fractional orders and parameters, the numerical solution of the SEIR fractional order Ebola system is closer to the real data than those models in other literature works. Meanwhile, we find that most of the fractional order Ebola systems have the same order. Hence, the fractional order Ebola system with different orders using the Caputo derivatives is also studied. We also adopt the MGAM algorithm to obtain the new orders, parameters, and the root-mean-square relative error which is $g(U^{*})=0.2744$ g ( U ∗ ) = 0.2744 . With the new parameters and orders, the fractional order Ebola systems with different orders fit very well with the real data.


2013 ◽  
Vol 634-638 ◽  
pp. 4017-4021
Author(s):  
Jun Hui Pan ◽  
Hui Wang ◽  
Xiao Gang Yang

Aiming at the petrophysical facies recognition, a novel identification method based on the weighted fuzzy reasoning networks is proposed in the paper. First, the types and indicators are obtained from core analysis data and the results given by experts, and then the standard patterning database of reservoir petrophysical facies is established. Secondly, by integrating expert experiences and quantitative indicators to reflect the change of petrophysical facies, the classification model of petrophysical facies based on the weighted fuzzy reasoning networks is designed. The preferable application results are presented by processing the real data from the Sabei development zone of Daqing oilfield.


2021 ◽  
Vol 6 (4) ◽  
pp. 50
Author(s):  
Payam Teimourzadeh Baboli ◽  
Davood Babazadeh ◽  
Amin Raeiszadeh ◽  
Susanne Horodyvskyy ◽  
Isabel Koprek

With the increasing demand for the efficiency of wind energy projects due to challenging market conditions, the challenges related to maintenance planning are increasing. In this paper, a condition-based monitoring system for wind turbines (WTs) based on data-driven modeling is proposed. First, the normal condition of the WTs key components is estimated using a tailor-made artificial neural network. Then, the deviation of the real-time measurement data from the estimated values is calculated, indicating abnormal conditions. One of the main contributions of the paper is to propose an optimization problem for calculating the safe band, to maximize the accuracy of abnormal condition identification. During abnormal conditions or hazardous conditions of the WTs, an alarm is triggered and a proposed risk indicator is updated. The effectiveness of the model is demonstrated using real data from an offshore wind farm in Germany. By experimenting with the proposed model on the real-world data, it is shown that the proposed risk indicator is fully consistent with upcoming wind turbine failures.


2019 ◽  
Vol 7 (2) ◽  
pp. T255-T263 ◽  
Author(s):  
Yanli Liu ◽  
Zhenchun Li ◽  
Guoquan Yang ◽  
Qiang Liu

The quality factor ([Formula: see text]) is an important parameter for measuring the attenuation of seismic waves. Reliable [Formula: see text] estimation and stable inverse [Formula: see text] filtering are expected to improve the resolution of seismic data and deep-layer energy. Many methods of estimating [Formula: see text] are based on an individual wavelet. However, it is difficult to extract the individual wavelet precisely from seismic reflection data. To avoid this problem, we have developed a method of directly estimating [Formula: see text] from reflection data. The core of the methodology is selecting the peak-frequency points to linear fit their logarithmic spectrum and time-frequency product. Then, we calculated [Formula: see text] according to the relationship between [Formula: see text] and the optimized slope. First, to get the peak frequency points at different times, we use the generalized S transform to produce the 2D high-precision time-frequency spectrum. According to the seismic wave attenuation mechanism, the logarithmic spectrum attenuates linearly with the product of frequency and time. Thus, the second step of the method is transforming a 2D spectrum into 1D by variable substitution. In the process of transformation, we only selected the peak frequency points to participate in the fitting process, which can reduce the impact of the interference on the spectrum. Third, we obtain the optimized slope by least-squares fitting. To demonstrate the reliability of our method, we applied it to a constant [Formula: see text] model and the real data of a work area. For the real data, we calculated the [Formula: see text] curve of the seismic trace near a well and we get the high-resolution section by using stable inverse [Formula: see text] filtering. The model and real data indicate that our method is effective and reliable for estimating the [Formula: see text] value.


2017 ◽  
Vol 19 (48) ◽  
pp. 32381-32388 ◽  
Author(s):  
Anna G. Matveeva ◽  
Vyacheslav M. Nekrasov ◽  
Alexander G. Maryasov

The model-free approach used does not introduce systematic distortions in the computed distance distribution function between two spins and appears to result in noise grouping in the short distance range.


Sign in / Sign up

Export Citation Format

Share Document