scholarly journals A fractional order epidemic model for the simulation of outbreaks of Ebola

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Weiqiu Pan ◽  
Tianzeng Li ◽  
Safdar Ali

AbstractThe Ebola outbreak in 2014 caused many infections and deaths. Some literature works have proposed some models to study Ebola virus, such as SIR, SIS, SEIR, etc. It is proved that the fractional order model can describe epidemic dynamics better than the integer order model. In this paper, we propose a fractional order Ebola system and analyze the nonnegative solution, the basic reproduction number $R_{0}$ R 0 , and the stabilities of equilibrium points for the system firstly. In many studies, the numerical solutions of some models cannot fit very well with the real data. Thus, to show the dynamics of the Ebola epidemic, the Gorenflo–Mainardi–Moretti–Paradisi scheme (GMMP) is taken to get the numerical solution of the SEIR fractional order Ebola system and the modified grid approximation method (MGAM) is used to acquire the parameters of the SEIR fractional order Ebola system. We consider that the GMMP method may lead to absurd numerical solutions, so its stability and convergence are given. Then, the new fractional orders, parameters, and the root-mean-square relative error $g(U^{*})=0.4146$ g ( U ∗ ) = 0.4146 are obtained. With the new fractional orders and parameters, the numerical solution of the SEIR fractional order Ebola system is closer to the real data than those models in other literature works. Meanwhile, we find that most of the fractional order Ebola systems have the same order. Hence, the fractional order Ebola system with different orders using the Caputo derivatives is also studied. We also adopt the MGAM algorithm to obtain the new orders, parameters, and the root-mean-square relative error which is $g(U^{*})=0.2744$ g ( U ∗ ) = 0.2744 . With the new parameters and orders, the fractional order Ebola systems with different orders fit very well with the real data.

Author(s):  
Zhenzhen Lu ◽  
Yongguang Yu ◽  
YangQuan Chen ◽  
Guojian Ren ◽  
Conghui Xu ◽  
...  

AbstractA novel coronavirus, designated as COVID-19, emerged in Wuhan, China, at the end of 2019. In this paper, a mathematical model is proposed to analyze the dynamic behavior of COVID-19. Based on inter-city networked coupling effects, a fractional-order SEIHDR system with the real-data from 23 January to 18 March, 2020 of COVID19 is discussed. Meanwhile, hospitalized individuals and the mortality rates of three types of individuals (exposed, infected and hospitalized) are firstly taken into account in the proposed model. And infectivity of individuals during incubation is also considered in this paper. By applying least squares method and predictor-correctors scheme, the numerical solutions of the proposed system in the absence of the inter-city network and with the inter-city network are stimulated by using the real-data from 23 January to 18 − m March, 2020 where m is equal to the number of prediction days. Compared with integer-order system (α = 0), the fractional-order model without network is validated to have a better fitting of the data on Beijing, Shanghai, Wuhan, Huanggang and other cities. In contrast to the case without network, the results indicate that the inter-city network system may be not a significant case to virus spreading for China because of the lock down and quarantine measures, however, it may have an impact on cities that have not adopted city closure. Meanwhile, the proposed model better fits the data from 24 February to 31, March in Italy, and the peak number of confirmed people is also predicted by this fraction-order model. Furthermore, the existence and uniqueness of a bounded solution under the initial condition are considered in the proposed system. Afterwards, the basic reproduction number R0 is analyzed and it is found to hold a threshold: the disease-free equilibrium point is locally asymptotically stable when R0 ≤ 1, which provides a theoretical basis for whether COVID-19 will become a pandemic in the future.


Author(s):  
Liangli Yang ◽  
Yongmei Su ◽  
Xinjian Zhuo

The outbreak of COVID-19 has a great impact on the world. Considering that there are different infection delays among different populations, which can be expressed as distributed delay, and the distributed time-delay is rarely used in fractional-order model to simulate the real data, here we establish two different types of fractional order (Caputo and Caputo–Fabrizio) COVID-19 models with distributed time-delay. Parameters are estimated by the least-square method according to the report data of China and other 12 countries. The results of Caputo and Caputo–Fabrizio model with distributed time-delay and without delay, the integer-order model with distributed delay are compared. These show that the fractional-order model can be better in fitting the real data. Moreover, Caputo order is better in short-term time fitting, Caputo–Fabrizio order is better in long-term fitting and prediction. Finally, the influence of several parameters is simulated in Caputo order model, which further verifies the importance of taking strict quarantine measures and paying close attention to the incubation period population.


2021 ◽  
Vol 67 (5 Sep-Oct) ◽  
Author(s):  
Muhammad Altaf Khan ◽  
Abdon Atangana ◽  
Taseer Muhammad ◽  
Ebraheem Alzahrani

The dynamical system has an important research area and due to its wide applications many researchers and scientists working to develop new model and techniques for their solution. We present in this work the dynamics of a chaotic model in the presence of newly introduced fractal-fractional operators. The model is formulated initially in ordinary differential equations and then we utilize the fractal-fractional (FF) in power law, exponential and Mittag-Leffler to generalize the model. For each fractal-fractional order model, we briefly study its numerical solution via the numerical algorithm. We present some graphical results with arbitrary order of fractal and fractional orders, and present that these operators provide different chaotic attractors for different fractal and fractional order values. The graphical results demonstrate the effectiveness of the fractal-fractional operators.


2014 ◽  
Vol 07 (04) ◽  
pp. 1450036 ◽  
Author(s):  
A. A. M. Arafa ◽  
S. Z. Rida ◽  
M. Khalil

In this paper, a fractional-order model which describes the human immunodeficiency type-1 virus (HIV-1) infection is presented. Numerical solutions are obtained using a generalized Euler method (GEM) to handle the fractional derivatives. The fractional derivatives are described in the Caputo sense. We show that the model established in this paper possesses non-negative solutions. Comparisons between the results of the fractional-order model, the results of the integer model and the measured real data obtained from 10 patients during primary HIV-1 infection are presented. These comparisons show that the results of the fractional-order model give predictions to the plasma virus load of the patients better than those of the integer model.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Pushpendra Kumar ◽  
Vedat Suat Erturk ◽  
Marina Murillo-Arcila ◽  
Ramashis Banerjee ◽  
A. Manickam

AbstractIn this study, our aim is to explore the dynamics of COVID-19 or 2019-nCOV in Argentina considering the parameter values based on the real data of this virus from March 03, 2020 to March 29, 2021 which is a data range of more than one complete year. We propose a Atangana–Baleanu type fractional-order model and simulate it by using predictor–corrector (P-C) method. First we introduce the biological nature of this virus in theoretical way and then formulate a mathematical model to define its dynamics. We use a well-known effective optimization scheme based on the renowned trust-region-reflective (TRR) method to perform the model calibration. We have plotted the real cases of COVID-19 and compared our integer-order model with the simulated data along with the calculation of basic reproductive number. Concerning fractional-order simulations, first we prove the existence and uniqueness of solution and then write the solution along with the stability of the given P-C method. A number of graphs at various fractional-order values are simulated to predict the future dynamics of the virus in Argentina which is the main contribution of this paper.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Tianzeng Li ◽  
Yu Wang ◽  
Weiqiu Pan

In the paper, we use the Caputo fractional derivative to consider general single-term and multiterm fractional-order SEIAR models for the outbreak of Norovirus. Then, the inverse problem about parameter estimation for these fractional-order SEIAR models of the Norovirus outbreak is studied firstly. To provide the numerical solution of the single-term (or multiterm) fractional-order nonlinear differential equation, the GMMP scheme and Newton method are introduced. Then, we make use of the modified hybrid Nelder-Mead simplex search and particle swarm optimization (MH-NMSS-PSO) algorithm to obtain the fractional orders and parameters for these fractional-order SEIAR models of Norovirus outbreak. To guarantee the correctness and effectiveness of the methods, the data of a 2007 Norovirus outbreak in a middle school in one city is used as the real data to solve the inverse problem of the parameter estimation. With the new parameters, all numerical studies illustrate that the numerical solutions fit very well with the real data, which reveals that the single-term and multiterm fractional-order SEIAR models of Norovirus outbreak all can predict the number of the infectious people accurately. And it also shows that the GMMP scheme and the MH-NMSS-PSO method are efficient and valid for estimating the parameters of the single-term (or multiterm) fractional-order nonlinear equations. Then, we research the impact of changes in each parameter on the amount of infected humans I t when the remaining parameters are unchanged. All results of numerical simulation reveal that the single-term and multiterm fractional-order SEIAR model of Norovirus can provide better results than other models. And we also study the effect of the isolation on different days. The conclusion is obtained that the earlier the isolation is taken, the less the infected people are. Hence, for a fractional-order application in the SEIAR model of Norovirus outbreak, we establish the effective parameter estimation methods.


2018 ◽  
Vol 7 (2.12) ◽  
pp. 234
Author(s):  
Karthik Subramanian ◽  
Shantam Tandon

Power factor is the ratio of the real current or voltage received by a load to the root mean square (rms) value of the current or voltage that was supposed to be acquired by the same load. The fact that the two become different is due to the presence of reactive power in the circuit which gets dissipated.Improving the power factor means reducing the phase difference between voltage and current. Since majority of the loads are of inductive nature, they require some amount of reactive power for them to function. Therefore, for the better use of electrical appliances with minimum amount of electrical consumption, the power factor should necessarily be increased and should be brought near to 1. This can be easily done by the help of Automatic Power Factor Correction Capacitors and Active filters.  


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xiaoqiao Huang ◽  
Chao Zhang ◽  
Qiong Li ◽  
Yonghang Tai ◽  
Bixuan Gao ◽  
...  

The intermittence and fluctuation character of solar irradiance places severe limitations on most of its applications. The precise forecast of solar irradiance is the critical factor in predicting the output power of a photovoltaic power generation system. In the present study, Model I-A and Model II-B based on traditional long short-term memory (LSTM) are discussed, and the effects of different parameters are investigated; meanwhile, Model II-AC, Model II-AD, Model II-BC, and Model II-BD based on a novel LSTM-MLP structure with two-branch input are proposed for hour-ahead solar irradiance prediction. Different lagging time parameters and different main input and auxiliary input parameters have been discussed and analyzed. The proposed method is verified on real data over 5 years. The experimental results demonstrate that Model II-BD shows the best performance because it considers the weather information of the next moment, the root mean square error (RMSE) is 62.1618 W/m2, the normalized root mean square error (nRMSE) is 32.2702%, and the forecast skill (FS) is 0.4477. The proposed algorithm is 19.19% more accurate than the backpropagation neural network (BPNN) in terms of RMSE.


2019 ◽  
Vol 29 (13) ◽  
pp. 1950174 ◽  
Author(s):  
Karthikeyan Rajagopal ◽  
Akif Akgul ◽  
Viet-Thanh Pham ◽  
Fawaz E. Alsaadi ◽  
Fahimeh Nazarimehr ◽  
...  

In this paper, a new four-dimensional chaotic flow is proposed. The system has a cyclic symmetry in its structure and shows a complicated, chaotic attractor. The dynamical properties of the system are investigated. The system shows multistability in an interval of its parameter. Fractional order model of the proposed system is discussed in various fractional orders. Bifurcation analysis of the fractional order system shows that it has a kind of multistability like the integer order system, which is a very rare phenomenon. Circuit realization of the proposed system is also carried out to show that it is usable for engineering applications.


Sign in / Sign up

Export Citation Format

Share Document