scholarly journals Copy Move Forgery Detection Through Differential Excitation Component-Based Texture Features

2020 ◽  
Vol 12 (3) ◽  
pp. 27-44
Author(s):  
Gulivindala Suresh ◽  
Chanamallu Srinivasa Rao

Copy-move forgery (CMF) is an established process to copy an image segment and pastes it within the same image to hide or duplicate a portion of the image. Several CMF detection techniques are available; however, better detection accuracy with low feature vector is always substantial. For this, differential excitation component (DEC) of Weber Law descriptor in combination with the gray level co-occurrence matrix (GLCM) approach of texture feature extraction for CMFD is proposed. GLCM Texture features are computed in four directions on DEC and this acts as a feature vector for support vector machine classifier. These texture features are more distinguishable and it is validated through other two proposed methods based on discrete wavelet transform-GLCM (DWT-GLCM) and GLCM. Experimentation is carried out on CoMoFoD and CASIA databases to validate the efficacy of proposed methods. Proposed methods exhibit resilience against many post-processing attacks. Comparative analysis with existing methods shows the superiority of the proposed method (DEC-GLCM) with regard to detection accuracy.

Author(s):  
Ann Nosseir ◽  
Seif Eldin A. Ahmed

Having a system that classifies different types of fruits and identifies the quality of fruits will be of a value in various areas especially in an area of mass production of fruits’ products. This paper presents a novel system that differentiates between four fruits types and identifies the decayed ones from the fresh. The algorithms used are based on the colour and the texture features of the fruits’ images. The algorithms extract the RGB values and the first statistical order and second statistical of the Gray Level Co-occurrence Matrix (GLCM) values. To segregate between the fruits’ types, Fine, Medium, Coarse, Cosine, Cubic, and Weighted K-Nearest Neighbors algorithms are applied. The accuracy percentages of each are 96.3%, 93.8%, 25%, 83.8%, 90%, and 95% respectively.  These steps are tested with 46 pictures taken from a mobile phone of seasonal fruits at the time i.e., banana, apple, and strawberry. All types were accurately identifying.  To tell apart the decayed fruits from the fresh, the linear and quadratic Support Vector Machine (SVM) algorithms differentiated between them based on the colour segmentation and the texture feature algorithms values of each fruit image. The accuracy of the linear SVM is 96% and quadratic SVM 98%.


2021 ◽  
Vol 10 (6) ◽  
pp. 3147-3155
Author(s):  
Vikas Srivastava ◽  
Sanjay Kumar Yadav

Sharing information through images is a trend nowadays. Advancements in the technology and user-friendly image editing tool make easy to edit the image and spread fake news through different social networking platforms. Forged image has been generated through an advanced image editing tool, so it is very challenging for image forensics to detect the micro discrepancy which distorted the micro pattern. This paper proposes an image forensic detection technique, which implies multi-level discrete wavelet transform to implement digital image filtering. Canny edge detection technique is implemented to detect the edge of the image to implement Otsu’s based enhanced local ternary pattern (OELTP), which can detect forgery-related artifact. DWT is implemented over Cb and Cr components of the image and using edge texture to improve the Otsu global threshold, which is used to extract features using ELTP technique. Support vector machine (SVM) is used for classification to find the image is forged or not. The performance of the work evaluated on three different open available data sets CASIA v1, CASIA v2, and Columbia. Our proposed work gives better results with some of the previous states of the work in terms of detection accuracy.


Author(s):  
Ismail Taha Ahmed ◽  
Baraa Tareq Hammad ◽  
Norziana Jamil

Any researcher's goal is to improve detection accuracy with a limited feature vector dimension. Therefore, in this paper, we attempt to find and discover the best types of texture features and classifiers that are appropriate for the coarse mesh finite differenc (CMFD). Segmentation-based fractal texture analysis (SFTA), local binary pattern (LBP), and Haralick are the texture features that have been chosen. K-nearest neighbors (KNN), naïve Bayes, and Logistics are also among the classifiers chosen. SFTA, local binary pattern (LBP), and Haralick feature vector are fed to the KNN, naïve Bayes, and logistics classifier. The outcomes of the experiment indicate that the SFTA texture feature surpassed all other texture features in all classifiers, making it the best texture feature to use in forgery detection. Haralick feature has the second-best texture feature performance in all of the classifiers. The performance using the LBP feature is lower than that of the other texture features. It also shows that the KNN classifier outperformed the other two in terms of accuracy. However, among the classifiers, the logistic classifier had the lowest accuracy. The proposed SFTA based KNN method is compared to other state-of-the-art techniques in terms of feature dimension and detection accuracy. The proposed method outperforms other current techniques.


2021 ◽  
Vol 10 (10) ◽  
pp. 658
Author(s):  
Yuexue Xu ◽  
Shengjia Zhang ◽  
Jinyu Li ◽  
Haiying Liu ◽  
Hongchun Zhu

Accurate landform classification is a crucial component of geomorphology. Although extensive classification efforts have been exerted based on the terrain factor, the scale analysis to describe the macro and micro landform features still needs standard measurement. To obtain the appropriate analysis scale of landform structure feature, and then carry out landform classification using the terrain texture, the texture feature is introduced for reflecting landform spatial differentiation and homogeneity. First, applying the ALOS World 3D-30m (AW3D30) DEM and selecting typical landforms of the southwest Tibet Plateau, the discrete wavelet transform (DWT), which acts as the texture feature analysis method, is executed to dissect the multiscale structural features of the terrain texture. Second, through the structural indices of reconstructed texture images, the optimum decomposition scale of DWT is confirmed. Under these circumstances, wavelet coefficients and wavelet energy entropy are extracted as texture features. Finally, the random forest (RF) method is utilized to classify the landform. Results indicate that the texture feature of DWT can achieve higher classification accuracy, which increases by approximately 11.8% compared with the gray co-occurrence matrix (GLCM).


2020 ◽  
Vol 43 (1) ◽  
pp. 29-45
Author(s):  
Alex Noel Joseph Raj ◽  
Ruban Nersisson ◽  
Vijayalakshmi G. V. Mahesh ◽  
Zhemin Zhuang

Nipple is a vital landmark in the breast lesion diagnosis. Although there are advanced computer-aided detection (CADe) systems for nipple detection in breast mediolateral oblique (MLO) views of mammogram images, few academic works address the coronal views of breast ultrasound (BUS) images. This paper addresses a novel CADe system to locate the Nipple Shadow Area (NSA) in ultrasound images. Here the Hu Moments and Gray-level Co-occurrence Matrix (GLCM) were calculated through an iterative sliding window for the extraction of shape and texture features. These features are then concatenated and fed into an Artificial Neural Network (ANN) to obtain probable NSA’s. Later, contour features, such as shape complexity through fractal dimension, edge distance from the periphery and contour area, were computed and passed into a Support Vector Machine (SVM) to identify the accurate NSA in each case. The coronal plane BUS dataset is built upon our own, which consists of 64 images from 13 patients. The test results show that the proposed CADe system achieves 91.99% accuracy, 97.55% specificity, 82.46% sensitivity and 88% F-score on our dataset.


2021 ◽  
Vol 15 (4) ◽  
pp. 18-30
Author(s):  
Om Prakash Samantray ◽  
Satya Narayan Tripathy

There are several malware detection techniques available that are based on a signature-based approach. This approach can detect known malware very effectively but sometimes may fail to detect unknown or zero-day attacks. In this article, the authors have proposed a malware detection model that uses operation codes of malicious and benign executables as the feature. The proposed model uses opcode extract and count (OPEC) algorithm to prepare the opcode feature vector for the experiment. Most relevant features are selected using extra tree classifier feature selection technique and then passed through several supervised learning algorithms like support vector machine, naive bayes, decision tree, random forest, logistic regression, and k-nearest neighbour to build classification models for malware detection. The proposed model has achieved a detection accuracy of 98.7%, which makes this model better than many of the similar works discussed in the literature.


The higher levels of blood glucose most often causes a metabolic disorder commonly called as Diabetes, scientifically as Diabetes Mellitus. A consequence of this is a major loss of vision and in long terms may eventually cause complete blindness. It initiates with swelling on blood vessels, formation of microaneurysms at the end of narrow capillaries. Haemorrhages due to rupture of small vessels and fluid leak causes exudates. The specialist examines it to diagnose and gives proper treatment. Fundus images are the fundamental tool for proper diagnosis of patients by medical experts. In this research work the fundus images are taken for processing, the neural network and support vector machine are trained for the proposed model. The features are extracted from the diabetic retinopathy image by using texture based algorithms such as Gabor, Local binary pattern and Gray level co-occurrence matrix for rating the level of diabetic retinopathy. The performance of all methods is calculated based on accuracy, precision, Recall and f-measure.


Author(s):  
Nilava Mukherjee ◽  
Sumitra Mukhopadhyay ◽  
Rajarshi Gupta

Abstract Motivation: In recent times, mental stress detection using physiological signals have received widespread attention from the technology research community. Although many motivating research works have already been reported in this area, the evidence of hardware implementation is occasional. The main challenge in stress detection research is using optimum number of physiological signals, and real-time detection with low complexity algorithm. Objective: In this work, a real-time stress detection technique is presented which utilises only photoplethysmogram (PPG) signal to achieve improved accuracy over multi-signal-based mental stress detection techniques. Methodology: A short segment of 5s PPG signal was used for feature extraction using an autoencoder (AE), and features were minimized using recursive feature elimination (RFE) integrated with a multi-class support vector machine (SVM) classifier. Results: The proposed AE-RFE-SVM based mental stress detection technique was tested with WeSAD dataset to detect four-levels of mental state, viz., baseline, amusement, meditation and stress and to achieve an overall accuracy, F1 score and sensitivity of 99%, 0.99 and 98% respectively for 5s PPG data. The technique provided improved performance over discrete wavelet transformation (DWT) based feature extraction followed by classification with either of the five types of classifiers, viz., SVM, random forest (RF), k-nearest neighbour (k-NN), linear regression (LR) and decision tree (DT). The technique was translated into a quad-core-based standalone hardware (1.2 GHz, and 1 GB RAM). The resultant hardware prototype achieves a low latency (~0.4 s) and low memory requirement (~1.7 MB). Conclusion: The present technique can be extended to develop remote healthcare system using wearable sensors.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi142-vi142
Author(s):  
Kaylie Cullison ◽  
Garrett Simpson ◽  
Danilo Maziero ◽  
Kolton Jones ◽  
Radka Stoyanova ◽  
...  

Abstract A dilemma in treating glioblastoma is that MRI after chemotherapy and radiation therapy (chemoRT) shows areas of presumed tumor growth in up to 50% of patients. These areas can represent true progression (TP), tumor growth with tumors non-responsive to treatment, or pseudoprogression (PP), edema and tumor necrosis with favorable treatment response. On imaging, TP and PP are usually not discernable. Patients in this study undergo six weeks of chemoRT on a combination MRI/RT device, receiving daily MRIs. The goal of this study is to explore the correlation of radiomics features with progression. The tumor lesion and surrounding areas of growth/edema were manually outlined as regions of interest (ROIs) for each daily T2-weighted MRI scan. The ROIs were used to calculate texture features: statistical features based on the gray-level co-occurrence matrix (GLCM), the gray-level zone size matrix (GLZSM), the gray-level run length matrix (GLRLM), and the neighborhood gray-tone difference matrix (NGTDM). Each of these matrix classes describe the probability of spatial relationships of gray levels occurring within the ROI. Daily texture features were averaged per week of treatment for each patient. Patient response was retrospectively defined as no progression (NP), TP, or PP. A Kruskal-Wallis test was performed to identify texture features that correlated most strongly with patient response. Forty texture features were calculated for 12 patients (19 treated, 7 excluded due to no T2 lesion or progression status unknown, 6 NP, 3 TP, 3 PP). There was a trend of more texture features correlating significantly with response in weeks 4-6 of treatment, compared to weeks 1-3. A particular texture feature, GLSZM Small Zone Low Gray-Level Emphasis, showed increasing difference between PP and TP over time, with significant difference during week 6 of treatment (p=0.0495). Future directions include correlating early outcomes with greater numbers of patients and daily multiparametric MRI.


2020 ◽  
Vol 9 (2) ◽  
pp. 25-44
Author(s):  
Usha N. ◽  
Sriraam N. ◽  
Kavya N. ◽  
Bharathi Hiremath ◽  
Anupama K Pujar ◽  
...  

Breast cancer is one among the most common cancers in women. The early detection of breast cancer reduces the risk of death. Mammograms are an efficient breast imaging technique for breast cancer screening. Computer aided diagnosis (CAD) systems reduce manual errors and helps radiologists to analyze the mammogram images. The mammogram images are typically in two views, cranial-caudal (CC) and medio lateral oblique (MLO) views. MLO contains pectoral muscles (chest muscles) at the upper right or left corner of the image. In this study, it was removed by using a semi-automated method. All the normal and abnormal images were filtered and enhanced to improve the quality. GLCM (Gray Level Co-occurrence Matrix) texture features were extracted and analyzed by changing the number of features in a feature set. Linear Support Vector Machine (LSVM) was used as classifier. The classification accuracy was improved as the number of features in GLCM feature set increases. Simulation results show an overall classification accuracy of 96.7% with 19 GLCM features using SVM classifiers.


Sign in / Sign up

Export Citation Format

Share Document