scholarly journals ANN and SVM to recognize Texture features for spontaneous Detection and Rating of Diabetic Retinopathy

The higher levels of blood glucose most often causes a metabolic disorder commonly called as Diabetes, scientifically as Diabetes Mellitus. A consequence of this is a major loss of vision and in long terms may eventually cause complete blindness. It initiates with swelling on blood vessels, formation of microaneurysms at the end of narrow capillaries. Haemorrhages due to rupture of small vessels and fluid leak causes exudates. The specialist examines it to diagnose and gives proper treatment. Fundus images are the fundamental tool for proper diagnosis of patients by medical experts. In this research work the fundus images are taken for processing, the neural network and support vector machine are trained for the proposed model. The features are extracted from the diabetic retinopathy image by using texture based algorithms such as Gabor, Local binary pattern and Gray level co-occurrence matrix for rating the level of diabetic retinopathy. The performance of all methods is calculated based on accuracy, precision, Recall and f-measure.

2020 ◽  
Vol 43 (1) ◽  
pp. 29-45
Author(s):  
Alex Noel Joseph Raj ◽  
Ruban Nersisson ◽  
Vijayalakshmi G. V. Mahesh ◽  
Zhemin Zhuang

Nipple is a vital landmark in the breast lesion diagnosis. Although there are advanced computer-aided detection (CADe) systems for nipple detection in breast mediolateral oblique (MLO) views of mammogram images, few academic works address the coronal views of breast ultrasound (BUS) images. This paper addresses a novel CADe system to locate the Nipple Shadow Area (NSA) in ultrasound images. Here the Hu Moments and Gray-level Co-occurrence Matrix (GLCM) were calculated through an iterative sliding window for the extraction of shape and texture features. These features are then concatenated and fed into an Artificial Neural Network (ANN) to obtain probable NSA’s. Later, contour features, such as shape complexity through fractal dimension, edge distance from the periphery and contour area, were computed and passed into a Support Vector Machine (SVM) to identify the accurate NSA in each case. The coronal plane BUS dataset is built upon our own, which consists of 64 images from 13 patients. The test results show that the proposed CADe system achieves 91.99% accuracy, 97.55% specificity, 82.46% sensitivity and 88% F-score on our dataset.


2020 ◽  
Vol 12 (3) ◽  
pp. 27-44
Author(s):  
Gulivindala Suresh ◽  
Chanamallu Srinivasa Rao

Copy-move forgery (CMF) is an established process to copy an image segment and pastes it within the same image to hide or duplicate a portion of the image. Several CMF detection techniques are available; however, better detection accuracy with low feature vector is always substantial. For this, differential excitation component (DEC) of Weber Law descriptor in combination with the gray level co-occurrence matrix (GLCM) approach of texture feature extraction for CMFD is proposed. GLCM Texture features are computed in four directions on DEC and this acts as a feature vector for support vector machine classifier. These texture features are more distinguishable and it is validated through other two proposed methods based on discrete wavelet transform-GLCM (DWT-GLCM) and GLCM. Experimentation is carried out on CoMoFoD and CASIA databases to validate the efficacy of proposed methods. Proposed methods exhibit resilience against many post-processing attacks. Comparative analysis with existing methods shows the superiority of the proposed method (DEC-GLCM) with regard to detection accuracy.


2020 ◽  
Vol 9 (2) ◽  
pp. 25-44
Author(s):  
Usha N. ◽  
Sriraam N. ◽  
Kavya N. ◽  
Bharathi Hiremath ◽  
Anupama K Pujar ◽  
...  

Breast cancer is one among the most common cancers in women. The early detection of breast cancer reduces the risk of death. Mammograms are an efficient breast imaging technique for breast cancer screening. Computer aided diagnosis (CAD) systems reduce manual errors and helps radiologists to analyze the mammogram images. The mammogram images are typically in two views, cranial-caudal (CC) and medio lateral oblique (MLO) views. MLO contains pectoral muscles (chest muscles) at the upper right or left corner of the image. In this study, it was removed by using a semi-automated method. All the normal and abnormal images were filtered and enhanced to improve the quality. GLCM (Gray Level Co-occurrence Matrix) texture features were extracted and analyzed by changing the number of features in a feature set. Linear Support Vector Machine (LSVM) was used as classifier. The classification accuracy was improved as the number of features in GLCM feature set increases. Simulation results show an overall classification accuracy of 96.7% with 19 GLCM features using SVM classifiers.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Li-sheng Wei ◽  
Quan Gan ◽  
Tao Ji

Skin diseases have a serious impact on people’s life and health. Current research proposes an efficient approach to identify singular type of skin diseases. It is necessary to develop automatic methods in order to increase the accuracy of diagnosis for multitype skin diseases. In this paper, three type skin diseases such as herpes, dermatitis, and psoriasis skin disease could be identified by a new recognition method. Initially, skin images were preprocessed to remove noise and irrelevant background by filtering and transformation. Then the method of grey-level co-occurrence matrix (GLCM) was introduced to segment images of skin disease. The texture and color features of different skin disease images could be obtained accurately. Finally, by using the support vector machine (SVM) classification method, three types of skin diseases were identified. The experimental results demonstrate the effectiveness and feasibility of the proposed method.


Author(s):  
Ann Nosseir ◽  
Seif Eldin A. Ahmed

Having a system that classifies different types of fruits and identifies the quality of fruits will be of a value in various areas especially in an area of mass production of fruits’ products. This paper presents a novel system that differentiates between four fruits types and identifies the decayed ones from the fresh. The algorithms used are based on the colour and the texture features of the fruits’ images. The algorithms extract the RGB values and the first statistical order and second statistical of the Gray Level Co-occurrence Matrix (GLCM) values. To segregate between the fruits’ types, Fine, Medium, Coarse, Cosine, Cubic, and Weighted K-Nearest Neighbors algorithms are applied. The accuracy percentages of each are 96.3%, 93.8%, 25%, 83.8%, 90%, and 95% respectively.  These steps are tested with 46 pictures taken from a mobile phone of seasonal fruits at the time i.e., banana, apple, and strawberry. All types were accurately identifying.  To tell apart the decayed fruits from the fresh, the linear and quadratic Support Vector Machine (SVM) algorithms differentiated between them based on the colour segmentation and the texture feature algorithms values of each fruit image. The accuracy of the linear SVM is 96% and quadratic SVM 98%.


2013 ◽  
Vol 647 ◽  
pp. 325-330 ◽  
Author(s):  
Yu Fan Zeng ◽  
Xue Jun Zhang ◽  
Wen Yan ◽  
Li Ling Long ◽  
Yu Kun Huang ◽  
...  

The fibrous texture in liver is one of important signs for interpreting the chronic liver diseases in radiologists’ routines. In order to investigate the usefulness of various texture features calculated by computer algorithm on hepatic magnetic resonance (MR) images, 15 texture features were calculated from the gray level co-occurrence matrix (GLCM) within a region of interest (ROI) which was selected from the MR images with 6 stages of hepatic fibrosis. By different combination of 15 features as input vectors, the classifier had different performance in staging the hepatic fibrosis. Each combination of texture features was tested by Support Vector Machine (SVM) with leave one case out method. 173 patients’ MR images including 6 stages of hepatic fibrosis were scanned within recent two years. The result showed that optimal number of features was confirmed from 3 to 7 by investigating the classified accuracy rate between each stage/group. It is evident that angular second moment, entropy, sum average and sum entropy played the most significant role in classification.


2016 ◽  
Vol 28 (06) ◽  
pp. 1650046
Author(s):  
V. Ratna Bhargavi ◽  
Ranjan K. Senapati

Rapid growth of Diabetes mellitus in people causes damage to posterior part of eye vessel structures. Diabetic retinopathy (DR) is an important hurdle in diabetic people and it causes lesion formation in retina due to retinal vessel structures damage. Bright lesions (BLs) or exudates are initial clinical signs of DR. Early BLs detection can help avoiding vision loss. The severity can be recognized based on number of BLs formed in the color fundus image. Manually diagnosing a large amount of images is time consuming. So a computerized DR grading and BLs detection system is proposed. In this paper for BLs detection, curvelet fusion enhancement is done initially because bright objects maps to largest coefficients in an image by utilizing the curvelet transform, so that BLs can be recognized in the retina easily. Then optic disk (OD) appearance is similar to BLs and vessel structures are barriers for lesion exact detection and moreover OD falsely classified as BLs and that increases false positives in classification. So these structures are segmented and eliminated by thresholding techniques. Various features were obtained from detected BLs. Publicly available databases are used for DR severity testing. 260 fundus images were used for the performance evaluation of proposed work. The support vector machine classifier (SVM) used to separate fundus images in various levels of DR based on feature set extracted. The proposed system that obtained the statistical measures were sensitivity 100%, specificity 95.4% and accuracy 97.74%. Compared to existing state-of-art techniques, the proposed work obtained better results in terms of sensitivity, specificity and accuracy.


2020 ◽  
Vol 10 (4) ◽  
pp. 5986-5991
Author(s):  
A. N. Saeed

Artificial Intelligence (AI) based Machine Learning (ML) is gaining more attention from researchers. In ophthalmology, ML has been applied to fundus photographs, achieving robust classification performance in the detection of diseases such as diabetic retinopathy, retinopathy of prematurity, etc. The detection and extraction of blood vessels in the retina is an essential part of various diagnosing problems associated with eyes, such as diabetic retinopathy. This paper proposes a novel machine learning approach to segment the retinal blood vessels from eye fundus images using a combination of color features, texture features, and Back Propagation Neural Networks (BPNN). The proposed method comprises of two steps, namely the color texture feature extraction and training the BPNN to get the segmented retinal nerves. Magenta color and correlation-texture features are given as input to the BPNN. The system was trained and tested in retinal fundus images taken from two distinct databases. The average sensitivity, specificity, and accuracy obtained for the segmentation of retinal blood vessels were 0.470%, 0.914%, and 0.903% respectively. Results obtained reveal that the proposed methodology is excellent in automated segmentation retinal nerves. The proposed segmentation methodology was able to obtain comparable accuracy with other methods.


2021 ◽  
Author(s):  
Arip Syaripudin Nur ◽  
Sungjae Park ◽  
Seulki Lee ◽  
Chang-Wook Lee

<p>Baekdu Mountain is a 2,744 m high stratovolcano, located on the border of China and North Korea. The mountain has a caldera lake, Lake Cheonji, as a result of past volcanic activity. The ice area changes during winter in Lake Cheonji could act as a proxy for volcanic activity monitoring in Baekdu. As Baekdu laid on a political border, remote sensing allows us to quantify attributes of otherwise inaccessible or dangerous places. We assessed changes in winter (October–April) ice area in a high-altitude groundwater-fed caldera lake using Sentinel-1 synthetic aperture radar (SAR) data acquired from 2015 to 2020. To calculate the ice-covered area, 10 gray level co-occurrence matrix (GLCM) texture features were computed from SAR images obtained with VH (vertical transmission and horizontal reception) and VV (vertical transmission and vertical reception) polarizations. A support vector machine (SVM) algorithm was used to classify ice and water pixels from the GLCM layers, and the results from VH and VV imagery were combined to calculate the total area covered by ice. We examined the relationship between ice area and air temperature from the closest weather station, Samjiyeon using fixed period regression. The ice area was inversely proportional to 30-day averaged air temperature and these variables were highly correlated (-0.86). Our results show that there were no significant ice changes during the period, which indicates that there was no significant volcanic activity in Baekdu Mountain during the winters of 2015–2020. This study is expected to be useful for a better understanding of whether and how ice area changes in volcano lakes aid in eruption forecasting.</p>


Sign in / Sign up

Export Citation Format

Share Document