Optimal Design of Single Machine Power System Stabilizer using Chemical Reaction Optimization Technique

2015 ◽  
Vol 4 (2) ◽  
pp. 51-69 ◽  
Author(s):  
Sourav Paul ◽  
Provas Kumar Roy

PSSs are added to excitation systems to enhance the damping during low frequency oscillations. The non-linear model of a machine is linearized at different operating points. Chemical Reaction optimization (CRO), a new population based search algorithm is been proposed in this paper to damp the power system low-frequency oscillations and enhance power system stability. Computation results demonstrate that the proposed algorithm is effective in damping low frequency oscillations as well as improving system dynamic stability. The performance of the proposed algorithm is evaluated for different loading conditions. In addition, the proposed algorithm is more effective and provides superior performance when compared other population based optimization algorithms like differential evolution (DE) and particle swarm optimization (PSO).

Author(s):  
Swathi Kommamuri ◽  
P. Sureshbabu

Power system stability improvement by a coordinate Design ofThyristor Controlled Series Compensator (TCSC) controller is addressed in this paper.Particle Swarm Optimization (PSO) technique is employed for optimization of the parameterconstrained nonlinear optimization problem implemented in a simulation environment. The proposed controllers are tested on a weakly connected power system. The non-linear simulation results are presented. The eigenvalue analysis and simulation results show the effectiveness and robustness of proposed controllers to improve the stability performance of power system by efficient damping of low frequency oscillations under various disturbances.


2015 ◽  
Vol 793 ◽  
pp. 29-33 ◽  
Author(s):  
M. Irwanto ◽  
Norfadilah ◽  
N. Gomesh ◽  
M. Irwan ◽  
M.R. Mamat

Power system stability means the ability to develop restoring forces equal to or greater than the disturbing forces to maintain the state of equilibrium. Successful operation of a power system depends largely on providing reliable and uninterrupted service to the loads by the power utility. The stability of the power system is concerned with the behavior of the synchronous machines after they have been disturbed. If the disturbance does not involve any net change in power, the machines should return to their original state. Due to small disturbances, power system experience these poorly damped low frequency oscillations. The dynamic stability of power systems are also affected by these low frequency oscillations. This paper presents to analyze and obtain the optimum gain for damping oscillation in SMIB by using Riccati matrix method to improve dynamic power system stability. The result shows that with suitable gain which is act as a stabilizer that taken from Riccati matrix, the oscillations of rotor speed and rotor angle can be well damped and hence the system stability is enhanced.


2017 ◽  
Vol 16 (1/2) ◽  
pp. 3-28 ◽  
Author(s):  
Prasenjit Dey ◽  
Aniruddha Bhattacharya ◽  
Priyanath Das

This paper reports a new technique for achieving optimized design for power system stabilizers. In any large scale interconnected systems, disturbances of small magnitudes are very common and low frequency oscillations pose a major problem. Hence small signal stability analysis is very important for analyzing system stability and performance. Power System Stabilizers (PSS) are used in these large interconnected systems for damping out low-frequency oscillations by providing auxiliary control signals to the generator excitation input. In this paper, collective decision optimization (CDO) algorithm, a meta-heuristic approach based on the decision making approach of human beings, has been applied for the optimal design of PSS. PSS parameters are tuned for the objective function, involving eigenvalues and damping ratios of the lightly damped electromechanical modes over a wide range of operating conditions. Also, optimal locations for PSS placement have been derived. Comparative study of the results obtained using CDO with those of grey wolf optimizer (GWO), differential Evolution (DE), Whale Optimization Algorithm (WOA) and crow search algorithm (CSA) methods, established the robustness of the algorithm in designing PSS under different operating conditions.


2013 ◽  
Vol 10 (2) ◽  
pp. 349-364
Author(s):  
Amin Safari ◽  
Ali Shayanfar ◽  
Ahad Kazemi

This paper proposes a novel current injection model of Pulse width Modulation based Series Compensator (PWMSC), as new FACTS controller, for damping of low frequency oscillations. The PWMSC operates as a means of continuous control of the degree of series compensation through the variation of the duty cycle of a train of fixed frequency-pulses. The methodology is tested on the sample single machine power system including PWMSC controller by performing computer simulations for small and large distributions. MATLAB/ Simulink software package was used for the simulations.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 177 ◽  
Author(s):  
S. Venkateswarlu ◽  
Janaki M ◽  
Thirumalaivasan R

The Power System Stabilizer (PSS) is a controller which is used to mitigate the instability of Low Frequency Oscillations (LFOs) in power systems. The condition of oscillatory instability can also cause the loss of generator synchronism. It is observed that the damping provided by PSS depends on the proper selection of its parameters. This paper presents the systematic method for the selection of PSS parameters using evolutionary nature inspired optimization technique called Flower Pollination Algorithm (FPA). FPA is employed for selecting the optimal parameters of PSS so as to mitigate the low frequency oscillations of generator rotor and thereby oscillatory instability. The system consists of Single Machine with PSS which is connected to Infinite Bus (SMIB) through a transmission line. The transient simulation validates the performance of the system with optimized PSS. The results show that PSS with FPA optimized parameters provides fast and stable response.  


2019 ◽  
Vol 41 (12) ◽  
pp. 3477-3489
Author(s):  
Hong-Liang Gao ◽  
Xi-Sheng Zhan ◽  
Yi-Ran Yuan ◽  
Zi-Jie Pan ◽  
Guo-Long Yuan

Several methods have been proposed and implemented to improve the power system stability. Based on the theory of proportional-integral-derivative (PID) excitation control and the composition principle of fuzzy PID controller, a novel PID controller based on Mamdani fuzzy inference (MFPID) is proposed in this paper. The proposed controller realizes the self-adjustment of the excitation controller parameter. Furthermore, the MFPID and power system stabilizer (PSS) subsection switch control strategy (MFPID-PSS) is presented based on the advantages of PSS and MFPID. In MFPID-PSS strategy, by switching the control strategy between MFPID and PSS at appropriate moment, the MFPID-PSS method acquires the overshoot as small as PSS, and at the same time acquires the adjusting time as short as MFPID. The simulation results demonstrate that the MFPID-PSS method improves the power system stability and has better mitigation effect for low frequency oscillations in power systems after disturbances.


2013 ◽  
Vol 694-697 ◽  
pp. 830-837 ◽  
Author(s):  
Ali Nasser Hussain ◽  
F. Malek ◽  
Mohd. Abdur Rashid ◽  
Latifah Mohamed ◽  
Ismail Daut

UPFC is considered as an important modern device in the flexible ac transmission systems family that provides the controllability and flexibility for transmission lines. It is also capable of enhancing the stability of the power system by the addition of a supplementary damping controller, which can be installed on any control channel of the UPFC inputs to implement the task of power oscillation damping controller. This paper presents the application of UPFC to enhance damping of low frequency oscillations by the simultaneous coordinated design between power system stabilizer and different UPFC supplementary damping controller in order to identify the design that provided the most robust damping performance in a single machine infinite bus. The parameters of the damping controller were tuned in the individual and coordinated design by using a chaotic particle swarm optimization algorithm that optimized the given eigenvalue-based objective function. The results analysis reveals that the proposed coordinated designs have high ability in damping Low-frequency oscillations and improve the system damping over their individual control responses. In addition, the coordinated design PSS & δE provides superior performance in comparison to the all coordinated designs.


Sign in / Sign up

Export Citation Format

Share Document