A Case Study of Probabilistic Seismic Slope Stability Analysis of Rock Fill Tailing Dam

2019 ◽  
Vol 10 (1) ◽  
pp. 43-60 ◽  
Author(s):  
Sitharam T.G. ◽  
Amarnath M. Hegde

The article presents the case history of expansion of rock fill tailing dam of the Rampura-Agucha zinc mine in Rajasthan, India. Before raising the height of the dam from 27 m to 54 m, a detailed seismic stability analysis was performed considering the spatial variability of the soil. The safety values and the probability of failure were calculated using the Monte Carlo simulation method. All the analyses were carried in a 2-D limit equilibrium-based SLIDE software using Spencer's method. The cohesive strength (c), the angle of friction and the acceleration due to earthquakes were considered as the random variable. The final slope geometry was created after the seismic stability analysis of the upstream and downstream slopes. For the critical geometry of the slope, the observed factor of safety values was found to be higher than the values specified in the ANCOLD. The probability of failure value was found to be less than 8%. The newly constructed rock fill dam has already sustained three Monsoon rains and still continues to be performing at its best condition.

2020 ◽  
Vol 4 (2) ◽  
pp. 73-77
Author(s):  
Sami Ullah ◽  
Muhib Ullah Khan ◽  
Gohar Rehman

One of the most common problem faced by geotechnical engineers is slope stability assessment. The predictions of slope stability in soil or rock masses is very important for the designing of reservoir dams, roads, tunnels, excavations, open pit mines, and other engineering structures. It is the importance of slope stability problem that has reasoned alternate methods for evaluating the safety of a slope. This study reviews the existing methods used for slope stability analysis. These methods are divided into five different groups which are; (a) Limit equilibrium method, (b) Numerical simulation method, (c) Artificial neural network method, (d) Limit analysis method, and (e) Vector sum method.


2019 ◽  
Vol 56 (12) ◽  
pp. 1979-1998 ◽  
Author(s):  
Jesse Burgess ◽  
Gordon A. Fenton ◽  
D.V. Griffiths

Deterministic seismic slope stability design charts for cohesive–frictional ([Formula: see text]) soils are traditionally used by geotechnical engineers to include the effects of earthquakes on slopes. These charts identify the critical seismic load event that is sufficient to bring the slope to a state of limit equilibrium, but they do not specify the probability of this event. In this paper, the probabilistic seismic stability of slopes, modeled using a two-dimensional spatially random [Formula: see text] soil, is examined for the first time using the random finite element method (RFEM). Slope stability design aids for seismic loading, which consider spatial variability of the soil, are provided to allow informed geotechnical seismic design decisions in the face of geotechnical uncertainties. The paper also provides estimates of the probability of slope failure without requiring computer simulations. How the design aids may be used is demonstrated with an example of slope remediation cost analysis and risk-based design.


1980 ◽  
Vol 17 (3) ◽  
pp. 352-360
Author(s):  
D. Athanasiou-Grivas

A previously developed model is used to provide a probabilistic seismic stability analysis for a natural slope located near Slingerlands, New York. The safety of the slope is measured in terms of its probability of failure rather than the customary factor of safety.Three types of possible earthquake sources are investigated, namely, a point, a line, and an area source. The dependence on significant seismic parameters of the probability of failure of the slope is examined and the results are presented in a number of graphs and tables.On the basis of the results obtained in this study, it is concluded that (a) the present model is useful in assessing the reliability of soil slopes under both static and seismic conditions; and (b) the probability of failure of a soil slope is greatly affected by the type of earthquake source involved and the values of the seismic parameters that are associated with it.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 319
Author(s):  
Musah Abdulai ◽  
Mostafa Sharifzadeh

The rock slope stability analysis can be performed using deterministic and probabilistic approaches. The deterministic analysis based on the safety concept factor uses fixed representative values for each input parameter involved without considering the variability and uncertainty of the rock mass properties. Probabilistic analysis with the calculation of probability of failure instead of the factor of safety against failure is emerging in practice. Such analyses offer a more rational approach to quantify risk by incorporating uncertainty in the input variables and evaluating the probability of the failure of a system. In rock slope engineering, uncertainty and variability involve a large scatter of geo-structural data and varied geomechanical test results. There has been extensive reliability analysis of rock slope stability in the literature, and different methods of reliability are being employed for assessment of the probability of failure and the reliability of a slope. Probabilistic approaches include Monte Carlo simulation (MCS), the point estimate method (PEM), the response surface method (RSM), first- and second-order reliability methods (FORMs and SORMs), and the first-order second-moment method (FOSM). Although these methods may be complicated, they provide a more complete definition of risk. Probabilistic slope stability analysis is an option in most commercial software; however, the use of this method is not common in practice. This paper provides an overview of the literature on some of the main probabilistic reliability-based methods available for the design of the rock slope in open pit mining. To demonstrate its applicability, the paper investigates the stability of a rock slope in an open pit mine in the Goldfields region, Western Australia. Two different approaches were adopted: deterministic stability analysis using two-dimensional limit equilibrium and finite element shear strength reduction methods using SLIDE and RS2 software, respectively, and probabilistic analysis by applying the MCS and RSM methods in the limit equilibrium method. In this example, the slope stability analysis was performed using the Spencer method with Cuckoo search optimization to locate the critical slip surface. The results obtained were compared and commented on.


Sign in / Sign up

Export Citation Format

Share Document