An Intelligent Web Search Using Multi-Document Summarization
Information available on the internet is huge, diverse and dynamic. Current Search Engine is doing the task of intelligent help to the users of the internet. For a query, it provides a listing of best matching or relevant web pages. However, information for the query is often spread across multiple pages which are returned by the search engine. This degrades the quality of search results. So, the search engines are drowning in information, but starving for knowledge. Here, we present a query focused extractive summarization of search engine results. We propose a two level summarization process: identification of relevant theme clusters, and selection of top ranking sentences to form summarized result for user query. A new approach to semantic similarity computation using semantic roles and semantic meaning is proposed. Document clustering is effectively achieved by application of MDL principle and sentence clustering and ranking is done by using SNMF. Experiments conducted demonstrate the effectiveness of system in semantic text understanding, document clustering and summarization.