Technological Innovations in Machining of Inconel 718

Author(s):  
Vivek Aggarwal ◽  
Rajiv K Garg ◽  
Sehijpal Singh Khangura

In this paper, a thorough review has been presented on the latest research work carried out for the enhancement of machining performance of one of the most commonly used superalloys that is, Inconel 718. The thermal energy has been frequently utilized for improving machinability characteristics of Inconel 718. The review of available literature indicates that plasma, laser, and electric discharge have been the major sources used for the enhancement of tool life, material removal rate, surface integrity, and reduction of cutting forces during machining of Inconel 718. However, a very few efforts have been made as regards to the use of wire electrical discharge machining and other energies like mechanical, electrochemical, and chemical for machining of this material. Moreover, the reported work on machining of Inconel 718 is largely focused on drilling operations. There is ample scope for research work on various other machining operations using alternative energies to gain more insight into machining of Inconel 718 and other similar superalloys.

Author(s):  
Jie Shing Lo ◽  
Chang Tai Jiang ◽  
Kun Ling Wu

Under special conditions, electrical discharge machining is prone to experiencing poor machining removal rate. This creates debris deposits that lead to decreased machining efficiency and poorer machining quality in the machining workpieces during machining operations. Thus, the present study investigated the use of slotted electrodes to improve machining debris removal and compared the machining capability of such electrodes with that of cylindrical, nonslotted electrodes. Concurrently, oscilloscopes were used to measure the machining voltage and current signals during the machining process, in which waveforms were analyzed to gain insight into the electrical discharge condition of the electrical discharge machining. Compared with general cylindrical, nonslotted electrodes, the deep slotted electrodes improved the material removal rate on large-scale and hemisphere electrical discharge machining result by 91% and 116.7%, respectively. The experiment results also show that slotted electrodes are inapplicable to finishing operations. Therefore, during roughing operations, slotted electrodes should be used to lower machining time; during finishing operations, cylindrical, nonslotted electrodes should be used to adjust machining precision.


2015 ◽  
Vol 656-657 ◽  
pp. 335-340 ◽  
Author(s):  
Fang Pin Chuang ◽  
Yan Cherng Lin ◽  
Hsin Min Lee ◽  
Han Ming Chow ◽  
A. Cheng Wang

The environment issue and green machining technique have been induced intensive attention in recent years. It is urgently need to develop a new kind dielectric to meet the requirements for industrial applications. The aim of this study is to develop a novel dielectric using gas media immersed in deionized water for electrical discharge machining (EDM). The developed machining medium for EDM can fulfill the environmentally friendly issue and satisfy the demand of high machining performance. The experiments were conducted by this developed medium to investigate the effects of machining parameters on machining characteristics in terms of material removal rate (MRR) and surface roughness. The developed EDM medium revealed the potential to obtain a stabilizing progress with excellent machining performance and environmentally friendly feature.


2014 ◽  
Vol 592-594 ◽  
pp. 479-483 ◽  
Author(s):  
Hemant Walkar ◽  
Vijaykumar S. Jatti ◽  
T.P. Singh

Electric discharge machining (EDM) is a non-conventional machining process in which material removal take place by a series of electric spark generated between the small gap of both electrode and both immersed in dielectric medium. The gap conditions of EDM significntly affect the stability of machining process. Thus, the machining performance would be improved by removing the debris from the machining gap fastly. In view of this, the objective of present work was to investigate the effect of magnetic field on the material removal rate (MRR) and surface roughness (SR), in conjunction with the variation of electrical parameters like pulse on-off times and gap current, while keeping other electrical parameters and work piece/ tool material constant. Experimental results showed that the magnetic field assisted EDM improves the process stability. Moreover, the EDM process with high efficiency and quality of machined parts could fulfill the requirements of modern manufacturing industries.


Author(s):  
Xiaokang Chen ◽  
Jianping Zhou ◽  
Kedian Wang ◽  
Yan Xu

Short electric arc machining is a recently developed high-efficiency electrical discharge machining technology. Material removal rate, tool mass wear ratio ([Formula: see text]), and workpiece surface roughness ( Ra) are important indexes used to evaluate the machining performance of short electric arc machining. In order to obtain better machining effect, the nickel-based superalloy GH4169 is machined by graphite in this article. The influence of voltage, duty cycle, and flushing pressure on short electric arc machining performance is then investigated under different tool polarity conditions. Experimental results show that higher material removal rate and lower [Formula: see text] can be obtained by negative polarity machining, while positive polarity machining can produce better surface quality. To investigate the cause of this difference, the surface integrity of GH4169 machined by different tool polarity is studied from macro and micro perspectives.


2014 ◽  
Vol 903 ◽  
pp. 51-55 ◽  
Author(s):  
Alexis Mouangue Nanimina ◽  
Ahmad Majdi Abdul Rani ◽  
Mohd Amri Lajis ◽  
Turnad Lenggo Ginta ◽  
T.V.V.L.N. Rao

Shape of workpiece, electrode orientation and flushing system play important role in electrical discharge machining (EDM) process. Low material removal rate and relatively high electrode wear ratio are some of the disadvantages of EDM process. This can be due to the flushing modes. Workpiece shape has a significant effect in effectiveness of dielectric flushing flow and orientation during EDM process. This research work is conducted to analyze the influence of various workpiece shapes. Square cavity, L shape, flat shape and U shape were machined with same cross-section electrode material. Test parameters are material removal rate (MRR) and electrode wear ratio (EWR). Experiment results show slight difference in MRR and EWR values for different shapes. U shape presents the highest MRR and the lowest EWR occurs in flat shape compared to cavity and L shapes. It can be concluded that flat and U shapes result in good EDM machining quality due to good dielectric flow and flushing conditions in the area of EDM machining.


Author(s):  
Vikas Gohil ◽  
YM Puri

Turning by electrical discharge machining is an emerging area of research. Generally, wire-cut electrical discharge machining is used for turning because it is not concerned with electrode tooling cost. The process variant die-sinking electrical discharge machining can also be effectively used to generate free-form cylindrical geometries on difficult-to-cut materials with complex shapes at both macro and micro levels. The machining performance of electric discharge machine is defined and influenced by its process parameters, which significantly affects production rate and the quality of machined component. Thus, it is very important to select machining parameters and their levels cautiously in order to improve the outcome of the process. In this article, the authors have reviewed the research work carried out in the area of electrical discharge turning in the last decade for the improvement of material removal rate, surface integrity and roundness. In this review, various techniques reported by electrical discharge machining researchers on turning have been categorised in different electrical discharge machining variants. The article also discussed the future direction of research work in the same area.


2014 ◽  
Vol 624 ◽  
pp. 124-128 ◽  
Author(s):  
Rajiv Kumar Garg ◽  
Vivek Aggarwal ◽  
Sehijpal Singh

The machining of superalloys has put really a challenge for technologists and researchers. The conventional techniques of machining do not give satisfactory performance for machining of superalloys. In this paper, the results of an experimental study for cutting of Inconel 718 superalloy with wire electrical discharge machining (WEDM) have been presented. Three different wire materials along with important input process parameters namely peak current, servo voltage, pulse on time and pulse off time have been selected. The effect of these parameters on material removal rate has been investigated by using well know experimental technique called response surface methodology. The experimental results indicate that zinc-coated brass wire is most suitable for Inconel 718. An empirical model has been developed for correlating input parameters and material removal rate for zinc-coated brass wire. Analysis of variance has also been presented.


Sign in / Sign up

Export Citation Format

Share Document