A Survey of the Use of Additive Fabrication in Component Replacement and Customised Automotive Modifications

Author(s):  
Tom Page

Given the relatively recent rise in domestic 3D printing technology and its affordability, many new and novel uses for these printers are emerging. Currently, desktop 3D printer sales are dominated by technology enthusiasts and ‘makers', applying this technology to educational electronic and mechanical projects. This research artucke assesses the current state of additive manufacturing (AM) and investigates the potential for use in DIY automotive modification. 3D printing technology has the potential to aid enthusiasts in the work they perform and break the limits of traditional, labour-intensive manufacturing and fabrication practices. Research was conducted to first establish the common projects undertaken by automotive ‘DIY'ers' and then further questions were posed with the aim of determining whether there are viable applications in the field of automotive modification at home.

2020 ◽  
Vol 11 (1) ◽  
pp. 49
Author(s):  
Keunbada Son ◽  
Kyu-Bok Lee

A dental implant surgical guide fabricated by 3-dimensional (3D) printing technology is widely used in clinical practice due to its convenience and fast fabrication. However, the 3D printing technology produces an incorrect guide hole due to the shrinkage of the resin materials, and in order to solve this, the guide hole is adjusted using a trimmer or a metal sleeve is attached to the guide hole. These methods can lead to another inaccuracy. The present method reports a technique to compensate for a decreased guide hole caused by shrinkage that can occur when a computer-guided implant surgical guide is fabricated with a 3D printer. The present report describes a technique to adjust the size of the guide hole using a free software program to identify the optimized guide hole size that is fabricated with the 3D printer.


2015 ◽  
Vol 6 (2) ◽  
pp. 63-86
Author(s):  
Dipesh Dhital ◽  
Yvonne Ziegler

Additive Manufacturing also known as 3D Printing is a process whereby a real object of virtually any shape can be created layer by layer from a Computer Aided Design (CAD) model. As opposed to the conventional Subtractive Manufacturing that uses cutting, drilling, milling, welding etc., 3D printing is a free-form fabrication process and does not require any of these processes. The 3D printed parts are lighter, require short lead times, less material and reduce environmental footprint of the manufacturing process; and is thus beneficial to the aerospace industry that pursues improvement in aircraft efficiency, fuel saving and reduction in air pollution. Additionally, 3D printing technology allows for creating geometries that would be impossible to make using moulds and the Subtractive Manufacturing of drilling/milling. 3D printing technology also has the potential to re-localize manufacturing as it allows for the production of products at the particular location, as and when required; and eliminates the need for shipping and warehousing of final products.


Author(s):  
Can Chi Trieu ◽  
Minh-Thien Nguyen ◽  
Thien-Toan Quan Le ◽  
Manh-Quyen Dam ◽  
Anh-Tu Tran ◽  
...  

3D printer and 3D printing technology are now considered as one of the key factor in the manufacturing industry. In the near future, we could envisage different application of 3D printing method in the sector of materials processing and production. In the sector of civil engineering, they existed somewhere some construction works developed with 3D printing technology.  In this study, we aim to manufacture laboratory-scale printers with nozzles and extrusion feeding systems suitable for paste such as the case of clay-based materials of silicate industry. The movement system was encoded and controlled via the motherboard (Mach 3 controller software). Stepper motors and shaft drives were also implemented in the frame element of such printer. The feeding system was designed based on the extrusion method including cylinder and piston element. Based on that, sample size 200x300x300mm was available for operation testing. Concerning the performance of the instrument, we have obtained printed specimens with different geometric shapes with complexity. From the obtained result, we also discussion on the feasibility up scaling the study and developing a 3D printer for silicate based materials.


History of additive manufacturing started in the 1980s in Japan. Stereolithography was invented first in 1983. After that tens of other techniques were invented under the common name 3D printing. When stereolithography was invented rapid prototyping did not exists. Tree years later new technique was invented: selective laser sintering (SLS). First commercial SLS was in 1990. At the end of 20t century, first bio-printer was developed. Using bio materials, first kidney was 3D printed. Ten years later, first 3D Printer in the kit was launched to the market. Today we have large scale printers that printed large 3D objects such are cars. 3D printing will be used for printing everything everywhere. List of pros and cons questions rising every day.


Machines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 84
Author(s):  
Marcin Ziółkowski ◽  
Tomasz Dyl

3D printing conquers new branches of production due to becoming a more reliable and professional method of manufacturing. The benefits of additive manufacturing such as part optimization, weight reduction, and ease of prototyping were factors accelerating the popularity of 3D printing. Additive manufacturing has found its niches, inter alia, in automotive, aerospace and dentistry. Although further research in those branches is still required, in some specific applications, additive manufacturing (AM) can be beneficial. It has been proven that additively manufactured parts have the potential to out perform the conventionally manufactured parts due to their mechanical properties; however, they must be designed for specific 3D printing technology, taking into account its limitations. The maritime industry has a long-standing tradition and is based on old, reliable techniques; therefore it implements new solutions very carefully. Besides, shipbuilding has to face very high classification requirements that force the use of technologies that guarantee repeatability and high quality. This paper provides information about current R&D works in the field of implementing AM in shipbuilding, possible benefits, opportunities and threats of implementation.


2021 ◽  
Author(s):  
G.K. Awari ◽  
C.S. Thorat ◽  
Vishwjeet Ambade ◽  
D.P. Kothari

This is a review paper on 3D printing, its significance, and future scope in the aircraft industry.In this article, additive manufacturing is compared with traditional manufacturing in the context of the aircraft industry that gives more accurate knowledge about how additive manufacturing is more effective in terms of cost-cutting, waste prevention, customization, and large-scale production. We will go into the need for 3D printing technology, how it has taken in step over other manufacturing process and are being used for a host of different applications. The paper gives sufficient information about various types of material used in additive manufacturing with the applications, examples, requirements, and process moreover some overview of limitations as well. How Rapid tooling is used with a different process to reduce time and get more productive and efficient parts for the aircraft industries. The use of 3D printing technology in the aircraft industry plays a major role and gained immense applications. It has greatly affected the production line due to its flexibility and ease of production. It is capable of producing intricate parts, a more resilient and lightweight structure that achievesa weight reduction of 40-60%, subsequently result in a leaner cost structure, material saving, and lower fuel consumption.The last section deals with the future scope of additive manufacturing in the aircraft industry with various parameters design aircraft wings, complex design parts, additive manufacturing in space. More companies and the aerospace industry continue to see the value of 3D printing and begin developing on-site 3D printing operations and investing in the technology


2021 ◽  
Author(s):  
Shadpour Mallakpour ◽  
Fariba Sirous ◽  
Chaudhery Mustansar Hussain

In recent years, additive manufacturing, or in other words three-dimensional (3D) printing technology has rapidly become one of the hot topics in the world. Among the vast majority of materials,...


Sign in / Sign up

Export Citation Format

Share Document