Minimization of Energy Hole in Under Water Sensor Networks (UWSNs)

2019 ◽  
Vol 8 (4) ◽  
pp. 1-12
Author(s):  
Satyabrata Das ◽  
Niva Tripathy

The major difference between underwater sensor networks (UWSNs) and terrestrial sensor networks is the use of acoustic signals as a communication medium rather than radio signals. The main reason behind this is the poor performance of radio signals in water. UWSNs have some distinct characteristics which makes them more research-oriented which is the large propagation delay, high error rate, low bandwidth, and limited energy. UWSNs have their application in the field of oceanographic, data collection, pollution monitoring, off-shore exploration, disaster prevention, assisted navigation, tactical surveillance, etc. In UWSNs the main advantages of protocol design are to a reliable and effective data transmission from source to destination. Among those, energy efficiency plays an important role in underwater communication. The main energy sources of UWSNs are batteries which are very difficult to replace frequently. There are two popular underwater protocols that are DBR and EEDBR. DBR is one of the popular routing techniques which don't use the full dimensional location information. In this article the authors use an efficient area localization scheme for UWSNs to minimize the energy hole created. Rather than finding the exact sensor position, this technique will estimate the position of every sensor node within certain area. In addition to that the authors introduced a RF based location finding and multilevel power transmission scheme. Simulation results shows that the proposed scheme produces better result than its counter parts.

Author(s):  
Meiyan Zhang ◽  
Wenyu Cai

Background: Effective 3D-localization in mobile underwater sensor networks is still an active research topic. Due to the sparse characteristic of underwater sensor networks, AUVs (Autonomous Underwater Vehicles) with precise positioning abilities will benefit cooperative localization. It has important significance to study accurate localization methods. Methods: In this paper, a cooperative and distributed 3D-localization algorithm for sparse underwater sensor networks is proposed. The proposed algorithm combines with the advantages of both recursive location estimation of reference nodes and the outstanding self-positioning ability of mobile AUV. Moreover, our design utilizes MMSE (Minimum Mean Squared Error) based recursive location estimation method in 2D horizontal plane projected from 3D region and then revises positions of un-localized sensor nodes through multiple measurements of Time of Arrival (ToA) with mobile AUVs. Results: Simulation results verify that the proposed cooperative 3D-localization scheme can improve performance in terms of localization coverage ratio, average localization error and localization confidence level. Conclusion: The research can improve localization accuracy and coverage ratio for whole underwater sensor networks.


2021 ◽  
Vol 15 (1) ◽  
pp. 1-26
Author(s):  
Sudip Misra ◽  
Tamoghna Ojha ◽  
Madhusoodhanan P

Node localization is a fundamental requirement in underwater sensor networks (UWSNs) due to the ineptness of GPS and other terrestrial localization techniques in the underwater environment. In any UWSN monitoring application, the sensed information produces a better result when it is tagged with location information. However, the deployed nodes in UWSNs are vulnerable to many attacks, and hence, can be compromised by interested parties to generate incorrect location information. Consequently, using the existing localization schemes, the deployed nodes are unable to autonomously estimate the precise location information. In this regard, similar existing schemes for terrestrial wireless sensor networks are not applicable to UWSNs due to its inherent mobility, limited bandwidth availability, strict energy constraints, and high bit-error rates. In this article, we propose SecRET , a <underline>Sec</underline>ure <underline>R</underline>ange-based localization scheme empowered by <underline>E</underline>vidence <underline>T</underline>heory for UWSNs. With trust-based computations, the proposed scheme, SecRET , enables the unlocalized nodes to select the most reliable set of anchors with low resource consumption. Thus, the proposed scheme is adaptive to many attacks in UWSN environment. NS-3 based performance evaluation indicates that SecRET maintains energy-efficiency of the deployed nodes while ensuring efficient and secure localization, despite the presence of compromised nodes under various attacks.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
En Cheng ◽  
Xizhou Lin ◽  
Shengli Chen ◽  
Fei Yuan

Due to the multipath, Doppler, and other effects, the node location signals have high probability of access collision in the underwater acoustic sensor networks (UW-ASNs), and therefore, it causes the signal lost and the access block; therefore, it constrains the networks performance. In this paper, we take the multilinear chirp (MLC) signals as the location signal to improve the anticollision ability. In order to increase the detection efficiency of MLC, we propose a fast efficient detection method called mixing change rate-fractional Fourier transform (MCR-FrFT). This method transforms the combined rates of MLC into symmetry triangle rates and then separates the multiuser signals based on the transformed rates by using FrFT. Theoretical derivation and simulation results show that the proposed method can detect the locations signals, estimate the time difference of arrival (TDoA), reduce the multiple access interference, and improve the location performance.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1414 ◽  
Author(s):  
Feng Zhou ◽  
Yushi Li ◽  
Hejun Wu ◽  
Zhimin Ding ◽  
Xiying Li

We study the problem of three-dimensional localization of the underwater mobile sensor networks using only range measurements without GPS devices. This problem is challenging because sensor nodes often drift with unknown water currents. Consequently, the moving direction and speed of a sensor node cannot be predicted. Moreover, the motion devices of the sensor nodes are not accurate in underwater environments. Therefore, we propose an adaptive localization scheme, ProLo, taking these uncertainties into consideration. This scheme applies the rigidity theory and maintains a virtual rigid structure through projection. We have proved the correctness of this three-dimensional localization scheme and also validated it using simulation. The results demonstrate that ProLo is promising for real mobile underwater sensor networks with various noises and errors.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1039 ◽  
Author(s):  
Tariq Islam ◽  
Yong Kyu Lee

Many applications of underwater sensor networks (UWSNs), such as target tracking, reconnaissance and surveillance, and marine life monitoring require information about the geographic locations of the sensed data. This makes the localization of sensor nodes a crucial part of such underwater sensing missions. In the case of mobile UWSNs, the problem becomes challenging, not only due to a need for the periodic tracking of nodes, but also due to network partitioning as a result of the pseudo-random mobility of nodes. In this work, we propose an energy efficient solution for localizing nodes in partitioned networks. Energy consumption is minimized by clustering unlocalized partitioned nodes and allowing only clusterheads to carry out a major part of the localization procedure on behalf of the whole cluster. Moreover, we introduce a retransmission control scheme that reduces energy consumption by controlling unnecessary transmission. The major design goal of our work is to maximize localization coverage while keeping communication overheads at a minimum, thus achieving better energy efficiency. The major contributions of this paper include a clustering technique for localizing partitioned nodes and a retransmission control strategy that reduces unnecessary transmissions.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2135 ◽  
Author(s):  
Tariq Islam ◽  
Yong Kyu Lee

Knowledge about the geographic coordinates of underwater sensor nodes is of primary importance for many applications and protocols of under water sensor networks (UWSNs) thus making localization of sensor nodes a crucial part of underwater network design. In case of mobile underwater sensor network, location estimation becomes challenging not only due to the need for periodic tracking of nodes, but also due to network partitioning caused by the pseudo-random mobility of nodes. Our proposed technique accomplishes the task of localization in two stages: (1) relative localization of sensor nodes with respect to a reference node at regular intervals during sensing operation. (2) Offline absolute localization of sensor nodes using absolute coordinates of the reference node and relative locations estimated during stage 1. As our protocol deals with mobile underwater sensor networks that may introduce network partitioning, we also propose a partition handling routine to deal with network partitions to achieve high localization coverage. The major design goal of our work is to maximize localization coverage while keeping communication overhead minimum, thus achieving better energy efficiency. Major contributions of this paper are: (1) Two energy efficient relative localization techniques, and (2) A partition handling strategy that ensures localization of partitioned nodes.


2013 ◽  
Vol 05 (01) ◽  
pp. 1350005
Author(s):  
XIANLING LU ◽  
DEYING LI ◽  
YI HONG ◽  
WENPING CHEN

Localization is one of the fundamental tasks for underwater sensors networks (USNs). It is required for data tagging, target detection, route protocols, and so on. In this paper, we propose an efficient low-cost range-free localization scheme for 3D underwater sensor networks (3D-LRLS) without any additional hardware infrastructure. In our scheme, each anchor node has variable transmission power levels. At first, the power levels of each anchor are decided by the Delaunay triangulation for the network space. Then, ordinary sensors listen to the beacons sent from the anchor nodes. Based on the beacon messages, each node calculates its location individually by a low computational complexity method. The extensive simulation results demonstrate that 3D-LRLS is efficient in terms of both localization ratio and localization accuracy.


Sign in / Sign up

Export Citation Format

Share Document