partitioned networks
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 5)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Er. Ashu Garg ◽  
Sourav

Delay tolerant networks (DTNs), such as sensor networks with scheduled intermittent connectivity, vehicular DTNs that disseminate location-dependent information, and pocket-switched networks that allow humans to communicate without network infrastructure, are highly partitioned networks that may suffer from frequent disconnectivity. In DTNs, the in-transit messages, also named bundles, can be sent over an existing link and buffered at the next hop until the next link in the path appears. This message propagation process is usually referred to as the “store-carry-and-forward” strategy, and the routing is decided in an “opportunistic” fashion. We aim to evaluate the added effect of the presence of malicious nodes on ad hoc network performance, and determine appropriate measures to detect malicious nodes. A malicious node advertising itself as having a valid route to the destination. With this intension the attacker consumes or intercepts the packet without any forwarding. An attacker can completely modify the packet and generate fake information, this cause the network traffic diverted or dropped. Let H be a malicious node. When H receives a Route Request, it sends back a Route Reply immediately, which constructs the data and can be transmitted by itself with the shortest path. So S receives Route Reply and it is replaced by H->S. then H receives all the data from S. In this research we propose a new assesment based scheme for detection of Malicious Nodes in DTN. And examine different strategies for prevention to malicious nodes as well as Compare out come proposed scheme with the earliest established schemes.


2019 ◽  
Vol 16 (3) ◽  
Author(s):  
Dimitar Garkov ◽  
Karsten Klein ◽  
Christian Klukas ◽  
Falk Schreiber

AbstractBiological networks can be large and complex, often consisting of different sub-networks or parts. Separation of networks into parts, network partitioning and layouts of overview and sub-graphs are of importance for understandable visualisations of those networks. This article presents NetPartVis to visualise non-overlapping clusters or partitions of graphs in the Vanted framework based on a method for laying out overview graph and several sub-graphs (partitions) in a coordinated, mental-map preserving way.


2019 ◽  
Vol 10 (2) ◽  
pp. 84-109 ◽  
Author(s):  
M. Syed Rabiya ◽  
R. Ramalakshmi

In an Intermittent Connected Networks / Opportunistic Networks, routing protocols follow store-carry-forward routing mechanism to deliver messages to destination. One of the application scenarios which makes use of opportunistic networks to route the packet from source to destination is an Emergency Search and Rescue operation where rescuer nodes get partitioned frequently and carry out their rescue activities in different locations. As wireless device has a short transmission range, communication between any two partitioned networks occurs only through the node mobility. The Probability based Routing, provides high packet delivery rate with high overhead. In this paper, a new technique called Replica Reduced and Energy-based routing protocol (REB) is proposed to control the replicas and increase the packet delivery ratio in emergency scenarios. Through simulation, this article demonstrates that the proposed system increases delivery rate and reduces overhead and energy consumption considerably, resulting in increased life span of the network.


Author(s):  
Dinesh Kumar ◽  
Jatin Gupta ◽  
Soumyendu Raha

The loss of dispersal connections between habitat patches may destabilize populations in a patched ecological network. This work studies the stability of populations when one or more communication links is removed. An example is finding the alignment of a highway through a patched forest containing a network of metapopulations in the patches. This problem is modelled as that of finding a stable cut of the graph induced by the metapopulations network, where nodes represent the habitat patches and the weighted edges model the dispersal between habitat patches. A reaction–diffusion system on the graph models the dynamics of the predator–prey system over the patched ecological network. The graph Laplacian's Fiedler value, which indicates the well-connectedness of the graph, is shown to affect the stability of the metapopulations. We show that, when the Fiedler value is sufficiently large, the removal of edges without destabilizing the dynamics of the network is possible. We give an exhaustive graph partitioning procedure, which is suitable for smaller networks and uses the criterion for both the local and global stability of populations in partitioned networks. A heuristic graph bisection algorithm that preserves the preassigned lower bound for the Fiedler value is proposed for larger networks and is illustrated with examples.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1039 ◽  
Author(s):  
Tariq Islam ◽  
Yong Kyu Lee

Many applications of underwater sensor networks (UWSNs), such as target tracking, reconnaissance and surveillance, and marine life monitoring require information about the geographic locations of the sensed data. This makes the localization of sensor nodes a crucial part of such underwater sensing missions. In the case of mobile UWSNs, the problem becomes challenging, not only due to a need for the periodic tracking of nodes, but also due to network partitioning as a result of the pseudo-random mobility of nodes. In this work, we propose an energy efficient solution for localizing nodes in partitioned networks. Energy consumption is minimized by clustering unlocalized partitioned nodes and allowing only clusterheads to carry out a major part of the localization procedure on behalf of the whole cluster. Moreover, we introduce a retransmission control scheme that reduces energy consumption by controlling unnecessary transmission. The major design goal of our work is to maximize localization coverage while keeping communication overheads at a minimum, thus achieving better energy efficiency. The major contributions of this paper include a clustering technique for localizing partitioned nodes and a retransmission control strategy that reduces unnecessary transmissions.


2017 ◽  
Vol 05 (04) ◽  
pp. 15-24
Author(s):  
Milad Ghiasi Rad ◽  
Pedram Gharghabi ◽  
Mohiyeddin Rahmani ◽  
Bamdad Falahati

Author(s):  
Umit Y. Ogras ◽  
Radu Marculescu ◽  
Diana Marculescu ◽  
Eun Gu Jung

Sign in / Sign up

Export Citation Format

Share Document