“Reverse Engineering” in Econophysics

Author(s):  
M.P. Hanias ◽  
L. Magafas ◽  
S.G. Stavrinides

The work presented here is a paradigm of EconoPhysics, i.e. of research in the area of finance and economics by applying physical models, in this case chaos theory. A specific analysis of a macroeconomic model proposed by Vosvrda is presented. The Vosvrda model is an idealized macroeconomic model, combining the savings of households, Gross Domestic Product and the foreign capital inflow. It is simulated by three autonomous differential equations. According to this model, there are six parameters, having their values regulating the system behavior (parameters of Vosvdra). Using artificial noisy data for simulating real data and using an inverse modelling procedure, the authors have fitted and tuned the parameters of Vosvdra differential equations to achieve more accurate solutions. The relevant resultant evaluation showed that the system is a chaotic one, even though for the same values proposed by Vosvrda. Finally, this chaotic behavior has provided the capability to expand the time horizon of the solution, thus achieving reliable forecasting for the system.

SIMULATION ◽  
2021 ◽  
pp. 003754972110216
Author(s):  
Zhang Lei ◽  
Li Jie ◽  
Wang Menglu ◽  
Liu Mengya

Simulating a physical system in real-time is widely used in equipment design, test, and validation. Though an implicit multistep numerical method excels at solving physical models that are usually composed of stiff ordinary differential equations, it is not suitable for real-time simulation because of state discontinuity and massive iterations for root finding. Thus, a method based on the backward differential formula is presented. It divides the main fixed step of real-time simulation into limited minor steps according to computing cost and accuracy demand. By analyzing and testing its capability, this method shows advantage and efficiency in real-time simulation, especially when the system contains stiff equations. A simulation application will have more flexibility while using this method.


2012 ◽  
Vol 28 (3) ◽  
pp. 513-522 ◽  
Author(s):  
H. M. Khanlo ◽  
M. Ghayour ◽  
S. Ziaei-Rad

AbstractThis study investigates the effects of disk position nonlinearities on the nonlinear dynamic behavior of a rotating flexible shaft-disk system. Displacement of the disk on the shaft causes certain nonlinear terms which appears in the equations of motion, which can in turn affect the dynamic behavior of the system. The system is modeled as a continuous shaft with a rigid disk in different locations. Also, the disk gyroscopic moment is considered. The partial differential equations of motion are extracted under the Rayleigh beam theory. The assumed modes method is used to discretize partial differential equations and the resulting equations are solved via numerical methods. The analytical methods used in this work are inclusive of time series, phase plane portrait, power spectrum, Poincaré map, bifurcation diagrams, and Lyapunov exponents. The effect of disk nonlinearities is studied for some disk positions. The results confirm that when the disk is located at mid-span of the shaft, only the regular motion (period one) is observed. However, periodic, sub-harmonic, quasi-periodic, and chaotic states can be observed for situations in which the disk is located at places other than the middle of the shaft. The results show nonlinear effects are negligible in some cases.


Author(s):  
V.Sh. Roitenberg ◽  

In this paper, autonomous differential equations of the second order are considered, the right-hand sides of which are polynomials of degree n with respect to the first derivative with periodic continuously differentiable coefficients, and the corresponding vector fields on the cylindrical phase space. The free term and the leading coefficient of the polynomial is assumed not to vanish, which is equivalent to the absence of singular points of the vector field. Rough equations are considered for which the topological structure of the phase portrait does not change under small perturbations in the class of equations under consideration. It is proved that the equation is rough if and only if all its closed trajectories are hyperbolic. Rough equations form an open and everywhere dense set in the space of the equations under consideration. It is shown that for n > 4 an equation of degree n can have arbitrarily many limit cycles. For n = 4, the possible number of limit cycles is determined in the case when the free term and the leading coefficient of the equation have opposite signs.


2020 ◽  
Vol 16 (4) ◽  
pp. 637-650
Author(s):  
P. Guha ◽  
◽  
S. Garai ◽  
A.G. Choudhury ◽  
◽  
...  

Recently Sinelshchikov et al. [1] formulated a Lax representation for a family of nonautonomous second-order differential equations. In this paper we extend their result and obtain the Lax pair and the associated first integral of a non-autonomous version of the Levinson – Smith equation. In addition, we have obtained Lax pairs and first integrals for several equations of the Painlevé – Gambier list, namely, the autonomous equations numbered XII, XVII, XVIII, XIX, XXI, XXII, XXIII, XXIX, XXXII, XXXVII, XLI, XLIII, as well as the non-autonomous equations Nos. XV and XVI in Ince’s book.


Sign in / Sign up

Export Citation Format

Share Document